LCOV - code coverage report
Current view: top level - tools - Matrix.h (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 107 124 86.3 %
Date: 2019-08-13 10:39:37 Functions: 50 51 98.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2011-2019 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #ifndef __PLUMED_tools_Matrix_h
      23             : #define __PLUMED_tools_Matrix_h
      24             : #include <vector>
      25             : #include <string>
      26             : #include <set>
      27             : #include <cmath>
      28             : #include "Exception.h"
      29             : #include "MatrixSquareBracketsAccess.h"
      30             : #include "Tools.h"
      31             : #include "Log.h"
      32             : #include "lapack/lapack.h"
      33             : 
      34             : namespace PLMD {
      35             : 
      36             : /// Calculate the dot product between two vectors
      37             : template <typename T> T dotProduct( const std::vector<T>& A, const std::vector<T>& B ) {
      38             :   plumed_assert( A.size()==B.size() );
      39             :   T val; for(unsigned i=0; i<A.size(); ++i) { val+=A[i]*B[i]; }
      40             :   return val;
      41             : }
      42             : 
      43             : /// Calculate the dot product between a vector and itself
      44             : template <typename T> T norm( const std::vector<T>& A ) {
      45             :   T val; for(unsigned i=0; i<A.size(); ++i) { val+=A[i]*A[i]; }
      46             :   return val;
      47             : }
      48             : 
      49             : /// This class stores a full matrix and allows one to do some simple matrix operations
      50             : template <typename T>
      51     3180546 : class Matrix:
      52             :   public MatrixSquareBracketsAccess<Matrix<T>,T>
      53             : {
      54             :   /// Multiply matrix by scalar
      55             :   template <typename U> friend Matrix<U> operator*(U&, const Matrix<U>& );
      56             :   /// Matrix matrix multiply
      57             :   template <typename U> friend void mult( const Matrix<U>&, const Matrix<U>&, Matrix<U>& );
      58             :   /// Matrix times a std::vector
      59             :   template <typename U> friend void mult( const Matrix<U>&, const std::vector<U>&, std::vector<U>& );
      60             :   /// std::vector times a Matrix
      61             :   template <typename U> friend void mult( const std::vector<U>&, const Matrix<U>&, std::vector<U>& );
      62             :   /// Matrix transpose
      63             :   template <typename U> friend void transpose( const Matrix<U>&, Matrix<U>& );
      64             :   /// Output the entire matrix on a single line
      65             :   template <typename U> friend Log& operator<<(Log&, const Matrix<U>& );
      66             :   /// Output the Matrix in matrix form
      67             :   template <typename U> friend void matrixOut( Log&, const Matrix<U>& );
      68             :   /// Diagonalize a symmetric matrix - returns zero if diagonalization worked
      69             :   template <typename U> friend int diagMat( const Matrix<U>&, std::vector<double>&, Matrix<double>& );
      70             :   /// Calculate the Moore-Penrose Pseudoinverse of a matrix
      71             :   template <typename U> friend int pseudoInvert( const Matrix<U>&, Matrix<double>& );
      72             :   /// Calculate the logarithm of the determinant of a symmetric matrix - returns zero if succesfull
      73             :   template <typename U> friend int logdet( const Matrix<U>&, double& );
      74             :   /// Invert a matrix (works for both symmetric and assymetric matrices) - returns zero if sucesfull
      75             :   template <typename U> friend int Invert( const Matrix<U>&, Matrix<double>& );
      76             :   /// Do a cholesky decomposition of a matrix
      77             :   template <typename U> friend void cholesky( const Matrix<U>&, Matrix<U>& );
      78             :   /// Solve a system of equations using the cholesky decomposition
      79             :   template <typename U> friend void chol_elsolve( const Matrix<U>&, const std::vector<U>&, std::vector<U>& );
      80             : private:
      81             :   /// Number of elements in matrix (nrows*ncols)
      82             :   unsigned sz;
      83             :   /// Number of rows in matrix
      84             :   unsigned rw;
      85             :   /// Number of columns in matrix
      86             :   unsigned cl;
      87             :   /// The data in the matrix
      88             :   std::vector<T> data;
      89             : public:
      90     3179209 :   Matrix(const unsigned nr=0, const unsigned nc=0 )  : sz(nr*nc), rw(nr), cl(nc), data(nr*nc) {}
      91         473 :   Matrix(const Matrix<T>& t) : sz(t.sz), rw(t.rw), cl(t.cl), data(t.data) {}
      92             :   /// Resize the matrix
      93      552885 :   void resize( const unsigned nr, const unsigned nc ) { rw=nr; cl=nc; sz=nr*nc; data.resize(sz); }
      94             :   /// Return the number of rows
      95     2913105 :   inline unsigned nrows() const { return rw; }
      96             :   /// Return the number of columns
      97     6307067 :   inline unsigned ncols() const { return cl; }
      98             :   /// Return element i,j of the matrix
      99   257707019 :   inline T operator () (const unsigned& i, const unsigned& j) const { return data[j+i*cl]; }
     100             :   /// Return a referenre to element i,j of the matrix
     101    86618557 :   inline T& operator () (const unsigned& i, const unsigned& j)      { return data[j+i*cl]; }
     102             :   /// Set all elements of the matrix equal to the value of v
     103       14695 :   Matrix<T>& operator=(const T& v) {
     104       14695 :     for(unsigned i=0; i<sz; ++i) { data[i]=v; }
     105       14695 :     return *this;
     106             :   }
     107             :   /// Set the Matrix equal to another Matrix
     108        4489 :   Matrix<T>& operator=(const Matrix<T>& m) {
     109        4489 :     sz=m.sz;
     110        4489 :     rw=m.rw;
     111        4489 :     cl=m.cl;
     112        4489 :     data=m.data;
     113        4489 :     return *this;
     114             :   }
     115             :   /// Set the Matrix equal to the value of a standard vector - used for readin
     116             :   Matrix<T>& operator=(const std::vector<T>& v) {
     117             :     plumed_dbg_assert( v.size()==sz );
     118             :     for(unsigned i=0; i<sz; ++i) { data[i]=v[i]; }
     119             :     return *this;
     120             :   }
     121             :   /// Add v to all elements of the Matrix
     122             :   Matrix<T> operator+=(const T& v) {
     123             :     for(unsigned i=0; i<sz; ++i) { data[i]+=v; }
     124             :     return *this;
     125             :   }
     126             :   /// Multiply all elements by v
     127           2 :   Matrix<T> operator*=(const T& v) {
     128           2 :     for(unsigned i=0; i<sz; ++i) { data[i]*=v; }
     129           2 :     return *this;
     130             :   }
     131             :   /// Matrix addition
     132             :   Matrix<T>& operator+=(const Matrix<T>& m) {
     133             :     plumed_dbg_assert( m.rw==rw && m.cl==cl );
     134             :     data+=m.data;
     135             :     return *this;
     136             :   }
     137             :   /// Subtract v from all elements of the Matrix
     138             :   Matrix<T> operator-=(const T& v) {
     139             :     for(unsigned i=0; i<sz; ++i) { data-=v; }
     140             :     return *this;
     141             :   }
     142             :   /// Matrix subtraction
     143             :   Matrix<T>& operator-=(const Matrix<T>& m) {
     144             :     plumed_dbg_assert( m.rw==rw && m.cl==cl );
     145             :     data-=m.data;
     146             :     return *this;
     147             :   }
     148             :   /// Test if the matrix is symmetric or not
     149      576281 :   unsigned isSymmetric() const {
     150      576281 :     if (rw!=cl) { return 0; }
     151      576281 :     unsigned sym=1;
     152      576281 :     for(unsigned i=1; i<rw; ++i) for(unsigned j=0; j<i; ++j) if( std::fabs(data[i+j*cl]-data[j+i*cl])>1.e-10 ) { sym=0; break; }
     153      576681 :     return sym;
     154             :   }
     155             : };
     156             : 
     157             : /// Multiply matrix by scalar
     158           2 : template <typename T> Matrix<T> operator*(T& v, const Matrix<T>& m ) {
     159           2 :   Matrix<T> new_m(m);
     160           2 :   new_m*=v;
     161           2 :   return new_m;
     162             : }
     163             : 
     164       13550 : template <typename T> void mult( const Matrix<T>& A, const Matrix<T>& B, Matrix<T>& C ) {
     165       13550 :   plumed_assert(A.cl==B.rw);
     166       13550 :   if( A.rw !=C.rw  || B.cl !=C.cl ) { C.resize( A.rw, B.cl ); } C=static_cast<T>( 0 );
     167       13550 :   for(unsigned i=0; i<A.rw; ++i) for(unsigned j=0; j<B.cl; ++j) for (unsigned k=0; k<A.cl; ++k) C(i,j)+=A(i,k)*B(k,j);
     168       13550 : }
     169             : 
     170          55 : template <typename T> void mult( const Matrix<T>& A, const std::vector<T>& B, std::vector<T>& C) {
     171          55 :   plumed_assert( A.cl==B.size() );
     172          54 :   if( C.size()!=A.rw  ) { C.resize(A.rw); }
     173          54 :   for(unsigned i=0; i<A.rw; ++i) { C[i]= static_cast<T>( 0 ); }
     174          55 :   for(unsigned i=0; i<A.rw; ++i) for(unsigned k=0; k<A.cl; ++k) C[i]+=A(i,k)*B[k] ;
     175          56 : }
     176             : 
     177             : template <typename T> void mult( const std::vector<T>& A, const Matrix<T>& B, std::vector<T>& C) {
     178             :   plumed_assert( B.rw==A.size() );
     179             :   if( C.size()!=B.cl ) {C.resize( B.cl );}
     180             :   for(unsigned i=0; i<B.cl; ++i) { C[i]=static_cast<T>( 0 ); }
     181             :   for(unsigned i=0; i<B.cl; ++i) for(unsigned k=0; k<B.rw; ++k) C[i]+=A[k]*B(k,i);
     182             : }
     183             : 
     184         400 : template <typename T> void transpose( const Matrix<T>& A, Matrix<T>& AT ) {
     185         400 :   if( A.rw!=AT.cl || A.cl!=AT.rw ) AT.resize( A.cl, A.rw );
     186         400 :   for(unsigned i=0; i<A.cl; ++i) for(unsigned j=0; j<A.rw; ++j) AT(i,j)=A(j,i);
     187         400 : }
     188             : 
     189             : template <typename T> Log& operator<<(Log& ostr, const Matrix<T>& mat) {
     190             :   for(unsigned i=0; i<mat.sz; ++i) ostr<<mat.data[i]<<" ";
     191             :   return ostr;
     192             : }
     193             : 
     194             : template <typename T> void matrixOut( Log& ostr, const Matrix<T>& mat) {
     195             :   for(unsigned i=0; i<mat.rw; ++i) {
     196             :     for(unsigned j=0; j<mat.cl; ++j) { ostr<<mat(i,j)<<" "; }
     197             :     ostr<<"\n";
     198             :   }
     199             :   return;
     200             : }
     201             : 
     202      566815 : template <typename T> int diagMat( const Matrix<T>& A, std::vector<double>& eigenvals, Matrix<double>& eigenvecs ) {
     203             : 
     204             :   // Check matrix is square and symmetric
     205      566815 :   plumed_assert( A.rw==A.cl ); plumed_assert( A.isSymmetric()==1 );
     206      566816 :   double *da=new double[A.sz]; unsigned k=0; double *evals=new double[ A.cl ];
     207             :   // Transfer the matrix to the local array
     208      566905 :   for (unsigned i=0; i<A.cl; ++i) for (unsigned j=0; j<A.rw; ++j) da[k++]=static_cast<double>( A(j,i) );
     209             : 
     210      566989 :   int n=A.cl; int lwork=-1, liwork=-1, m, info, one=1;
     211      566989 :   double *work=new double[A.cl]; int *iwork=new int[A.cl];
     212      566982 :   double vl, vu, abstol=0.0;
     213      566982 :   int* isup=new int[2*A.cl]; double *evecs=new double[A.sz];
     214             : 
     215      567056 :   plumed_lapack_dsyevr("V", "I", "U", &n, da, &n, &vl, &vu, &one, &n,
     216             :                        &abstol, &m, evals, evecs, &n,
     217             :                        isup, work, &lwork, iwork, &liwork, &info);
     218      566672 :   if (info!=0) return info;
     219             : 
     220             :   // Retrieve correct sizes for work and iwork then reallocate
     221      566653 :   liwork=iwork[0]; delete [] iwork; iwork=new int[liwork];
     222      567064 :   lwork=static_cast<int>( work[0] ); delete [] work; work=new double[lwork];
     223             : 
     224      567061 :   plumed_lapack_dsyevr("V", "I", "U", &n, da, &n, &vl, &vu, &one, &n,
     225             :                        &abstol, &m, evals, evecs, &n,
     226             :                        isup, work, &lwork, iwork, &liwork, &info);
     227      566864 :   if (info!=0) return info;
     228             : 
     229      566864 :   if( eigenvals.size()!=A.cl ) { eigenvals.resize( A.cl ); }
     230      567072 :   if( eigenvecs.rw!=A.rw || eigenvecs.cl!=A.cl ) { eigenvecs.resize( A.rw, A.cl ); }
     231      567279 :   k=0;
     232     2806147 :   for(unsigned i=0; i<A.cl; ++i) {
     233     2239094 :     eigenvals[i]=evals[i];
     234             :     // N.B. For ease of producing projectors we store the eigenvectors
     235             :     // ROW-WISE in the eigenvectors matrix.  The first index is the
     236             :     // eigenvector number and the second the component
     237     2240104 :     for(unsigned j=0; j<A.rw; ++j) { eigenvecs(i,j)=evecs[k++]; }
     238             :   }
     239             : 
     240             :   // This changes eigenvectors so that the first non-null element
     241             :   // of each of them is positive
     242             :   // We can do it because the phase is arbitrary, and helps making
     243             :   // the result reproducible
     244     2805702 :   for(int i=0; i<n; ++i) {
     245             :     int j;
     246     2238758 :     for(j=0; j<n; j++) if(eigenvecs(i,j)*eigenvecs(i,j)>1e-14) break;
     247     2238876 :     if(j<n) if(eigenvecs(i,j)<0.0) for(j=0; j<n; j++) eigenvecs(i,j)*=-1;
     248             :   }
     249             : 
     250             :   // Deallocate all the memory used by the various arrays
     251      566944 :   delete[] da; delete [] work; delete [] evals; delete[] evecs; delete [] iwork; delete [] isup;
     252      566938 :   return 0;
     253             : }
     254             : 
     255             : template <typename T> int pseudoInvert( const Matrix<T>& A, Matrix<double>& pseudoinverse ) {
     256             :   double *da=new double[A.sz]; unsigned k=0;
     257             :   // Transfer the matrix to the local array
     258             :   for (unsigned i=0; i<A.cl; ++i) for (unsigned j=0; j<A.rw; ++j) da[k++]=static_cast<double>( A(j,i) );
     259             : 
     260             :   int nsv, info, nrows=A.rw, ncols=A.cl;
     261             :   if(A.rw>A.cl) {nsv=A.cl;} else {nsv=A.rw;}
     262             : 
     263             :   // Create some containers for stuff from single value decomposition
     264             :   double *S=new double[nsv]; double *U=new double[nrows*nrows];
     265             :   double *VT=new double[ncols*ncols]; int *iwork=new int[8*nsv];
     266             : 
     267             :   // This optimizes the size of the work array used in lapack singular value decomposition
     268             :   int lwork=-1; double* work=new double[1];
     269             :   plumed_lapack_dgesdd( "A", &nrows, &ncols, da, &nrows, S, U, &nrows, VT, &ncols, work, &lwork, iwork, &info );
     270             :   if(info!=0) return info;
     271             : 
     272             :   // Retrieve correct sizes for work and rellocate
     273             :   lwork=(int) work[0]; delete [] work; work=new double[lwork];
     274             : 
     275             :   // This does the singular value decomposition
     276             :   plumed_lapack_dgesdd( "A", &nrows, &ncols, da, &nrows, S, U, &nrows, VT, &ncols, work, &lwork, iwork, &info );
     277             :   if(info!=0) return info;
     278             : 
     279             :   // Compute the tolerance on the singular values ( machine epsilon * number of singular values * maximum singular value )
     280             :   double tol; tol=S[0]; for(int i=1; i<nsv; ++i) { if( S[i]>tol ) { tol=S[i]; } } tol*=nsv*epsilon;
     281             : 
     282             :   // Get the inverses of the singlular values
     283             :   Matrix<double> Si( ncols, nrows ); Si=0.0;
     284             :   for(int i=0; i<nsv; ++i) { if( S[i]>tol ) { Si(i,i)=1./S[i]; } else { Si(i,i)=0.0; } }
     285             : 
     286             :   // Now extract matrices for pseudoinverse
     287             :   Matrix<double> V( ncols, ncols ), UT( nrows, nrows ), tmp( ncols, nrows );
     288             :   k=0; for(int i=0; i<nrows; ++i) { for(int j=0; j<nrows; ++j) { UT(i,j)=U[k++]; } }
     289             :   k=0; for(int i=0; i<ncols; ++i) { for(int j=0; j<ncols; ++j) { V(i,j)=VT[k++]; } }
     290             : 
     291             :   // And do matrix algebra to construct the pseudoinverse
     292             :   if( pseudoinverse.rw!=ncols || pseudoinverse.cl!=nrows ) pseudoinverse.resize( ncols, nrows );
     293             :   mult( V, Si, tmp ); mult( tmp, UT, pseudoinverse );
     294             : 
     295             :   // Deallocate all the memory
     296             :   delete [] S; delete [] U; delete [] VT; delete [] work; delete [] iwork; delete [] da;
     297             :   return 0;
     298             : }
     299             : 
     300        9238 : template <typename T> int Invert( const Matrix<T>& A, Matrix<double>& inverse ) {
     301             : 
     302        9238 :   if( A.isSymmetric()==1 ) {
     303             :     // GAT -- I only ever use symmetric matrices so I can invert them like this.
     304             :     // I choose to do this as I have had problems with the more general way of doing this that
     305             :     // is implemented below.
     306       18364 :     std::vector<double> eval(A.rw); Matrix<double> evec(A.rw,A.cl), tevec(A.rw,A.cl);
     307        9182 :     int err; err=diagMat( A, eval, evec );
     308        9182 :     if(err!=0) return err;
     309        9182 :     for (unsigned i=0; i<A.rw; ++i) for (unsigned j=0; j<A.cl; ++j) tevec(i,j)=evec(j,i)/eval[j];
     310       18364 :     mult(tevec,evec,inverse);
     311             :   } else {
     312          54 :     double *da=new double[A.sz]; int *ipiv=new int[A.cl];
     313          53 :     unsigned k=0; int n=A.rw, info;
     314          53 :     for(unsigned i=0; i<A.cl; ++i) for(unsigned j=0; j<A.rw; ++j) da[k++]=static_cast<double>( A(j,i) );
     315             : 
     316          57 :     plumed_lapack_dgetrf(&n,&n,da,&n,ipiv,&info);
     317          55 :     if(info!=0) return info;
     318             : 
     319          55 :     int lwork=-1; double* work=new double[A.cl];
     320          56 :     plumed_lapack_dgetri(&n,da,&n,ipiv,work,&lwork,&info);
     321          54 :     if(info!=0) return info;
     322             : 
     323          54 :     lwork=static_cast<int>( work[0] ); delete [] work; work=new double[lwork];
     324          56 :     plumed_lapack_dgetri(&n,da,&n,ipiv,work,&lwork,&info);
     325          54 :     if(info!=0) return info;
     326             : 
     327          54 :     if( inverse.cl!=A.cl || inverse.rw!=A.rw ) { inverse.resize(A.rw,A.cl); }
     328          53 :     k=0; for(unsigned i=0; i<A.rw; ++i) for(unsigned j=0; j<A.cl; ++j) inverse(j,i)=da[k++];
     329             : 
     330          57 :     delete [] da; delete[] work; delete[] ipiv;
     331             :   }
     332             : 
     333        9239 :   return 0;
     334             : }
     335             : 
     336         446 : template <typename T> void cholesky( const Matrix<T>& A, Matrix<T>& B ) {
     337             : 
     338         446 :   plumed_assert( A.rw==A.cl && A.isSymmetric() );
     339         446 :   Matrix<T> L(A.rw,A.cl); L=0.;
     340         892 :   std::vector<T> D(A.rw,0.);
     341        1047 :   for(unsigned i=0; i<A.rw; ++i) {
     342         601 :     L(i,i)=static_cast<T>( 1 );
     343         756 :     for (unsigned j=0; j<i; ++j) {
     344         155 :       L(i,j)=A(i,j);
     345         155 :       for (unsigned k=0; k<j; ++k) L(i,j)-=L(i,k)*L(j,k)*D[k];
     346         155 :       if (D[j]!=0.) L(i,j)/=D[j]; else L(i,j)=static_cast<T>( 0 );
     347             :     }
     348         601 :     D[i]=A(i,i);
     349         601 :     for (unsigned k=0; k<i; ++k) D[i]-=L(i,k)*L(i,k)*D[k];
     350             :   }
     351             : 
     352         446 :   for(unsigned i=0; i<A.rw; ++i) D[i]=(D[i]>0.?sqrt(D[i]):0.);
     353         446 :   if( B.rw!=A.rw || B.cl!=A.cl ) { B.resize( A.rw, A.cl); }
     354         892 :   B=0.; for(unsigned i=0; i<A.rw; ++i) for(unsigned j=0; j<=i; ++j) B(i,j)+=L(i,j)*D[j];
     355         446 : }
     356             : 
     357             : template <typename T> void chol_elsolve( const Matrix<T>& M, const std::vector<T>& b, std::vector<T>& y ) {
     358             : 
     359             :   plumed_assert( M.rw==M.cl && M(0,1)==0.0 && b.size()==M.rw );
     360             :   if( y.size()!=M.rw ) { y.resize( M.rw ); }
     361             :   for(unsigned i=0; i<M.rw; ++i) {
     362             :     y[i]=b[i];
     363             :     for(unsigned j=0; j<i; ++j) y[i]-=M(i,j)*y[j];
     364             :     y[i]*=1.0/M(i,i);
     365             :   }
     366             : }
     367             : 
     368           0 : template <typename T> int logdet( const Matrix<T>& M, double& ldet ) {
     369             :   // Check matrix is square and symmetric
     370           0 :   plumed_assert( M.rw==M.cl || M.isSymmetric() );
     371             : 
     372           0 :   double *da=new double[M.sz]; unsigned k=0; double *evals=new double[M.cl];
     373             :   // Transfer the matrix to the local array
     374           0 :   for (unsigned i=0; i<M.rw; ++i) for (unsigned j=0; j<M.cl; ++j) da[k++]=static_cast<double>( M(j,i) );
     375             : 
     376           0 :   int n=M.cl; int lwork=-1, liwork=-1, info, m, one=1;
     377           0 :   double *work=new double[M.rw]; int *iwork=new int[M.rw];
     378           0 :   double vl, vu, abstol=0.0;
     379           0 :   int* isup=new int[2*M.rw]; double *evecs=new double[M.sz];
     380           0 :   plumed_lapack_dsyevr("N", "I", "U", &n, da, &n, &vl, &vu, &one, &n,
     381             :                        &abstol, &m, evals, evecs, &n,
     382             :                        isup, work, &lwork, iwork, &liwork, &info);
     383           0 :   if (info!=0) return info;
     384             : 
     385             :   // Retrieve correct sizes for work and iwork then reallocate
     386           0 :   lwork=static_cast<int>( work[0] ); delete [] work; work=new double[lwork];
     387           0 :   liwork=iwork[0]; delete [] iwork; iwork=new int[liwork];
     388             : 
     389           0 :   plumed_lapack_dsyevr("N", "I", "U", &n, da, &n, &vl, &vu, &one, &n,
     390             :                        &abstol, &m, evals, evecs, &n,
     391             :                        isup, work, &lwork, iwork, &liwork, &info);
     392           0 :   if (info!=0) return info;
     393             : 
     394             :   // Transfer the eigenvalues and eigenvectors to the output
     395           0 :   ldet=0; for(unsigned i=0; i<M.cl; i++) { ldet+=log(evals[i]); }
     396             : 
     397             :   // Deallocate all the memory used by the various arrays
     398           0 :   delete[] da; delete [] work; delete [] evals; delete[] evecs; delete [] iwork; delete [] isup;
     399             : 
     400           0 :   return 0;
     401             : }
     402             : 
     403             : 
     404             : 
     405             : }
     406             : #endif

Generated by: LCOV version 1.13