LCOV - code coverage report
Current view: top level - core - FlexibleBin.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 80 161 49.7 %
Date: 2019-08-13 10:39:37 Functions: 5 9 55.6 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2012-2019 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "FlexibleBin.h"
      23             : #include "ActionWithArguments.h"
      24             : #include <cmath>
      25             : #include <iostream>
      26             : #include <vector>
      27             : #include "tools/Matrix.h"
      28             : 
      29             : using namespace std;
      30             : namespace PLMD {
      31             : 
      32             : 
      33          22 : FlexibleBin::FlexibleBin(int type, ActionWithArguments *paction,  double const &d, vector<double> &smin, vector<double> &smax):type(type),paction(paction),sigma(d),sigmamin(smin),sigmamax(smax) {
      34             :   // initialize the averages and the variance matrices
      35          22 :   if(type==diffusion) {
      36           3 :     unsigned ncv=paction->getNumberOfArguments();
      37           3 :     vector<double> average(ncv*(ncv+1)/2);
      38           3 :     vector<double> variance(ncv*(ncv+1)/2);
      39             :   }
      40          22 :   paction->log<<"  Limits for sigmas using adaptive hills:  \n";
      41          64 :   for(unsigned i=0; i<paction->getNumberOfArguments(); ++i) {
      42          42 :     paction->log<<"   CV  "<<paction->getPntrToArgument(i)->getName()<<":\n";
      43          42 :     if(sigmamin[i]>0.) {
      44           0 :       limitmin.push_back(true);
      45           0 :       paction->log<<"       Min "<<sigmamin[i];
      46           0 :       sigmamin[i]*=sigmamin[i]; // this is because the matrix which is calculated is the sigmasquared
      47             :     } else {
      48          42 :       limitmin.push_back(false);
      49          42 :       paction->log<<"       Min No ";
      50             :     }
      51          42 :     if(sigmamax[i]>0.) {
      52           0 :       limitmax.push_back(true);
      53           0 :       paction->log<<"       Max "<<sigmamax[i];
      54           0 :       sigmamax[i]*=sigmamax[i];
      55             :     } else {
      56          42 :       limitmax.push_back(false);
      57          42 :       paction->log<<"       Max No ";
      58             :     }
      59          42 :     paction->log<<" \n";
      60             :   }
      61             : 
      62          22 : }
      63             : 
      64             : /// Constructure for 1D FB for PBMETAD
      65           0 : FlexibleBin::FlexibleBin(int type, ActionWithArguments *paction, unsigned iarg,
      66             :                          double const &d, vector<double> &smin, vector<double> &smax):
      67           0 :   type(type),paction(paction),sigma(d),sigmamin(smin),sigmamax(smax)
      68             : {
      69             :   // initialize the averages and the variance matrices
      70           0 :   if(type==diffusion) {
      71           0 :     vector<double> average(1);
      72           0 :     vector<double> variance(1);
      73             :   }
      74           0 :   paction->log<<"  Limits for sigmas using adaptive hills:  \n";
      75           0 :   paction->log<<"   CV  "<<paction->getPntrToArgument(iarg)->getName()<<":\n";
      76           0 :   if(sigmamin[0]>0.) {
      77           0 :     limitmin.push_back(true);
      78           0 :     paction->log<<"       Min "<<sigmamin[0];
      79           0 :     sigmamin[0]*=sigmamin[0];
      80             :   } else {
      81           0 :     limitmin.push_back(false);
      82           0 :     paction->log<<"       Min No ";
      83             :   }
      84           0 :   if(sigmamax[0]>0.) {
      85           0 :     limitmax.push_back(true);
      86           0 :     paction->log<<"       Max "<<sigmamax[0];
      87           0 :     sigmamax[0]*=sigmamax[0];
      88             :   } else {
      89           0 :     limitmax.push_back(false);
      90           0 :     paction->log<<"       Max No ";
      91             :   }
      92           0 :   paction->log<<" \n";
      93           0 : }
      94             : 
      95             : /// Update the flexible bin
      96             : /// in case of diffusion based: update at every step
      97             : /// in case of gradient based: update only when you add the hill
      98         778 : void FlexibleBin::update(bool nowAddAHill) {
      99         778 :   unsigned ncv=paction->getNumberOfArguments();
     100         778 :   unsigned dimension=ncv*(ncv+1)/2;
     101             :   // this is done all the times from scratch. It is not an accumulator
     102         778 :   unsigned  k=0;
     103             :   unsigned i;
     104         778 :   vector<double> cv;
     105        1556 :   vector<double> delta;
     106             :   // if you use this below then the decay is in time units
     107             :   //double decay=paction->getTimeStep()/sigma;
     108             :   // to be consistent with the rest of the program: everything is better to be in timesteps
     109         778 :   double decay=1./sigma;
     110             :   // here update the flexible bin according to the needs
     111         778 :   switch (type) {
     112             :   // This should be called every time
     113             :   case diffusion:
     114             :     //
     115             :     // THE AVERAGE VALUE
     116             :     //
     117             :     // beware: the pbc
     118         586 :     delta.resize(ncv);
     119         586 :     for(i=0; i<ncv; i++)cv.push_back(paction->getArgument(i));
     120         586 :     if(average.size()==0) { // initial time: just set the initial vector
     121           2 :       average.resize(ncv);
     122           2 :       for(i=0; i<ncv; i++)average[i]=cv[i];
     123             :     } else { // accumulate
     124        1168 :       for(i=0; i<ncv; i++) {
     125         584 :         delta[i]=paction->difference(i,average[i],cv[i]);
     126         584 :         average[i]+=decay*delta[i];
     127         584 :         average[i]=paction->bringBackInPbc(i,average[i]); // equation 8 of "Metadynamics with adaptive Gaussians"
     128             :       }
     129             : 
     130             :     }
     131             :     //
     132             :     // THE VARIANCE
     133             :     //
     134         586 :     if(variance.size()==0) {
     135           2 :       variance.resize(dimension,0.); // nonredundant members dimension=ncv*(ncv+1)/2;
     136             :     } else {
     137         584 :       k=0;
     138        1168 :       for(i=0; i<ncv; i++) {
     139        1168 :         for(unsigned j=i; j<ncv; j++) { // upper diagonal loop
     140         584 :           variance[k]+=decay*(delta[i]*delta[j]-variance[k]);
     141         584 :           k++;
     142             :         }
     143             :       }
     144             :     }
     145         586 :     break;
     146             :   case geometry:
     147             :     //
     148             :     //this calculates in variance the \nabla CV_i \dot \nabla CV_j
     149             :     //
     150         192 :     variance.resize(dimension);
     151             :     //cerr<< "Doing geometry "<<endl;
     152             :     // now the signal for retrieving the gradients should be already given by checkNeedsGradients.
     153             :     // here just do the projections
     154             :     // note that the call  checkNeedsGradients() in BiasMetaD takes care of switching on the call to gradients
     155         192 :     if (nowAddAHill) { // geometry is sync with hill deposition
     156             :       //cerr<< "add a hill "<<endl;
     157          83 :       k=0;
     158         249 :       for(unsigned i=0; i<ncv; i++) {
     159         415 :         for(unsigned j=i; j<ncv; j++) {
     160             :           // eq 12 of "Metadynamics with adaptive Gaussians"
     161         249 :           variance[k]=sigma*sigma*(paction->getProjection(i,j));
     162         249 :           k++;
     163             :         }
     164             :       };
     165             :     };
     166         192 :     break;
     167             :   default:
     168           0 :     cerr<< "This flexible bin is not recognized  "<<endl;
     169           0 :     exit(1)     ;
     170         778 :   }
     171             : 
     172         778 : }
     173             : 
     174           0 : vector<double> FlexibleBin::getMatrix() const {
     175           0 :   return variance;
     176             : }
     177             : 
     178             : /// Update the flexible bin for PBMetaD like FlexBin
     179             : /// in case of diffusion based: update at every step
     180             : /// in case of gradient based: update only when you add the hill
     181           0 : void FlexibleBin::update(bool nowAddAHill, unsigned iarg) {
     182             :   // this is done all the times from scratch. It is not an accumulator
     183           0 :   vector<double> cv;
     184           0 :   vector<double> delta;
     185             :   // if you use this below then the decay is in time units
     186             :   // to be consistent with the rest of the program: everything is better to be in timesteps
     187           0 :   double decay=1./sigma;
     188             :   // here update the flexible bin according to the needs
     189           0 :   switch (type) {
     190             :   // This should be called every time
     191             :   case diffusion:
     192             :     //
     193             :     // THE AVERAGE VALUE
     194             :     //
     195           0 :     delta.resize(1);
     196           0 :     cv.push_back(paction->getArgument(iarg));
     197           0 :     if(average.size()==0) { // initial time: just set the initial vector
     198           0 :       average.resize(1);
     199           0 :       average[0]=cv[0];
     200             :     } else { // accumulate
     201           0 :       delta[0]=paction->difference(iarg,average[0],cv[0]);
     202           0 :       average[0]+=decay*delta[0];
     203           0 :       average[0]=paction->bringBackInPbc(iarg,average[0]); // equation 8 of "Metadynamics with adaptive Gaussians"
     204             :     }
     205             :     //
     206             :     // THE VARIANCE
     207             :     //
     208           0 :     if(variance.size()==0) {
     209           0 :       variance.resize(1,0.); // nonredundant members dimension=ncv*(ncv+1)/2;
     210             :     } else {
     211           0 :       variance[0]+=decay*(delta[0]*delta[0]-variance[0]);
     212             :     }
     213           0 :     break;
     214             :   case geometry:
     215             :     //
     216             :     //this calculates in variance the \nabla CV_i \dot \nabla CV_j
     217             :     //
     218           0 :     variance.resize(1);
     219             :     // now the signal for retrieving the gradients should be already given by checkNeedsGradients.
     220             :     // here just do the projections
     221             :     // note that the call  checkNeedsGradients() in BiasMetaD takes care of switching on the call to gradients
     222           0 :     if (nowAddAHill) { // geometry is sync with hill deposition
     223             :       // eq 12 of "Metadynamics with adaptive Gaussians"
     224           0 :       variance[0]=sigma*sigma*(paction->getProjection(iarg,iarg));
     225             :     }
     226           0 :     break;
     227             :   default:
     228           0 :     cerr<< "This flexible bin is not recognized  "<<endl;
     229           0 :     exit(1)     ;
     230           0 :   }
     231           0 : }
     232             : 
     233             : ///
     234             : /// Calculate the matrix of  (dcv_i/dx)*(dcv_j/dx)^-1
     235             : /// that is needed for the metrics in metadynamics
     236             : ///
     237             : ///
     238         374 : vector<double> FlexibleBin::getInverseMatrix() const {
     239         374 :   unsigned ncv=paction->getNumberOfArguments();
     240         374 :   Matrix<double> matrix(ncv,ncv);
     241             :   unsigned i,j,k;
     242         374 :   k=0;
     243             :   //paction->log<<"------------ GET INVERSE MATRIX ---------------\n";
     244             :   // place the matrix in a complete matrix for compatibility
     245         831 :   for (i=0; i<ncv; i++) {
     246         997 :     for (j=i; j<ncv; j++) {
     247         540 :       matrix(j,i)=matrix(i,j)=variance[k];
     248         540 :       k++;
     249             :     }
     250             :   }
     251             : #define NEWFLEX
     252             : #ifdef NEWFLEX
     253             :   // diagonalize to impose boundaries (only if boundaries are set)
     254         748 :   Matrix<double> eigenvecs(ncv,ncv);
     255         748 :   vector<double> eigenvals(ncv);
     256             : 
     257             :   //eigenvecs: first is eigenvec number, second is eigenvec component
     258         374 :   if(diagMat( matrix, eigenvals, eigenvecs )!=0) {plumed_merror("diagonalization in FlexibleBin failed! This matrix is weird\n");};
     259             : 
     260         831 :   for (i=0; i<ncv; i++) { //loop on the dimension
     261         457 :     if( limitmax[i] ) {
     262             :       //limit every  component that is larger
     263           0 :       for (j=0; j<ncv; j++) { //loop on components
     264           0 :         if(pow(eigenvals[j]*eigenvecs[j][i],2)>pow(sigmamax[i],2) ) {
     265           0 :           eigenvals[j]=sqrt(pow(sigmamax[i]/(eigenvecs[j][i]),2))*copysign(1.,eigenvals[j]);
     266             :         }
     267             :       }
     268             :     }
     269             :   }
     270         831 :   for (i=0; i<ncv; i++) { //loop on the dimension
     271             :     // find the largest one:  if it is smaller than min  then rescale
     272         457 :     if( limitmin[i] ) {
     273           0 :       unsigned imax=0;
     274           0 :       double fmax=-1.e10;
     275           0 :       for (j=0; j<ncv; j++) { //loop on components
     276           0 :         double fact=pow(eigenvals[j]*eigenvecs[j][i],2);
     277           0 :         if(fact>fmax) {
     278           0 :           fmax=fact; imax=j;
     279             :         }
     280             :       }
     281           0 :       if(fmax<pow(sigmamin[i],2) ) {
     282           0 :         eigenvals[imax]=sqrt(pow(sigmamin[i]/(eigenvecs[imax][i]),2))*copysign(1.,eigenvals[imax]);
     283             :       }
     284             :     }
     285             :   }
     286             : 
     287             :   // normalize eigenvecs
     288         748 :   Matrix<double> newinvmatrix(ncv,ncv);
     289         831 :   for (i=0; i<ncv; i++) {
     290        1080 :     for (j=0; j<ncv; j++) {
     291         623 :       newinvmatrix[j][i]=eigenvecs[j][i]/eigenvals[j];
     292             :     }
     293             :   }
     294             : 
     295         374 :   vector<double> uppervec(ncv*(ncv+1)/2);
     296         374 :   k=0;
     297         831 :   for (i=0; i<ncv; i++) {
     298         997 :     for (j=i; j<ncv; j++) {
     299         540 :       double scal=0;
     300        1329 :       for(unsigned l=0; l<ncv; ++l) {
     301         789 :         scal+=eigenvecs[l][i]*newinvmatrix[l][j];
     302             :       }
     303         540 :       uppervec[k]=scal; k++;
     304             :     }
     305             :   }
     306             : #else
     307             :   // get the inverted matrix
     308             :   Matrix<double> invmatrix(ncv,ncv);
     309             :   Invert(matrix,invmatrix);
     310             :   vector<double> uppervec(ncv*(ncv+1)/2);
     311             :   // upper diagonal of the inverted matrix (that is symmetric)
     312             :   k=0;
     313             :   for (i=0; i<ncv; i++) {
     314             :     for (j=i; j<ncv; j++) {
     315             :       uppervec[k]=invmatrix(i,j);
     316             :       //paction->log<<"VV "<<i<<" "<<j<<" "<<uppervec[k]<<"\n";
     317             :       k++;
     318             :     }
     319             :   }
     320             : #endif
     321         748 :   return uppervec;
     322             : }
     323             : 
     324             : ///
     325             : /// Calculate the matrix of  (dcv_i/dx)*(dcv_j/dx)^-1
     326             : /// that is needed for the metrics in metadynamics
     327             : /// for PBMetaD like FlexBin
     328             : ///
     329           0 : vector<double> FlexibleBin::getInverseMatrix(unsigned iarg) const {
     330             :   // diagonalize to impose boundaries (only if boundaries are set)
     331           0 :   vector<double> eigenvals(1, variance[0]);
     332           0 :   if( limitmax[0] ) {
     333           0 :     if(eigenvals[0]>sigmamax[0]) {
     334           0 :       eigenvals[0]=sigmamax[0];
     335             :     }
     336             :   }
     337             :   // find the largest one:  if it is smaller than min  then rescale
     338           0 :   if( limitmin[0] ) {
     339           0 :     double fmax=-1.e10;
     340           0 :     double fact=eigenvals[0];
     341           0 :     if(fact>fmax) {
     342           0 :       fmax=fact;
     343             :     }
     344           0 :     if(fmax<sigmamin[0]) {
     345           0 :       eigenvals[0]=sigmamin[0];
     346             :     }
     347             :   }
     348           0 :   vector<double> uppervec(1,1./eigenvals[0]);
     349             : 
     350           0 :   return uppervec;
     351             : }
     352             : 
     353        4821 : }

Generated by: LCOV version 1.13