LCOV - code coverage report
Current view: top level - colvar - Torsion.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 68 74 91.9 %
Date: 2019-08-13 10:39:37 Functions: 10 11 90.9 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2011-2019 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "Colvar.h"
      23             : #include "ActionRegister.h"
      24             : #include "tools/Torsion.h"
      25             : 
      26             : #include <string>
      27             : #include <cmath>
      28             : 
      29             : using namespace std;
      30             : 
      31             : namespace PLMD {
      32             : namespace colvar {
      33             : 
      34             : //+PLUMEDOC COLVAR TORSION
      35             : /*
      36             : Calculate a torsional angle.
      37             : 
      38             : This command can be used to compute the torsion between four atoms or alternatively
      39             : to calculate the angle between two vectors projected on the plane
      40             : orthogonal to an axis.
      41             : 
      42             : \par Examples
      43             : 
      44             : This input tells plumed to print the torsional angle between atoms 1, 2, 3 and 4
      45             : on file COLVAR.
      46             : \plumedfile
      47             : t: TORSION ATOMS=1,2,3,4
      48             : # this is an alternative, equivalent, definition:
      49             : # t: TORSION VECTOR1=2,1 AXIS=2,3 VECTOR2=3,4
      50             : PRINT ARG=t FILE=COLVAR
      51             : \endplumedfile
      52             : 
      53             : If you are working with a protein you can specify the special named torsion angles \f$\phi\f$, \f$\psi\f$, \f$\omega\f$ and \f$\chi_1\f$
      54             : by using TORSION in combination with the \ref MOLINFO command.  This can be done by using the following
      55             : syntax.
      56             : 
      57             : \plumedfile
      58             : MOLINFO MOLTYPE=protein STRUCTURE=myprotein.pdb
      59             : t1: TORSION ATOMS=@phi-3
      60             : t2: TORSION ATOMS=@psi-4
      61             : PRINT ARG=t1,t2 FILE=colvar STRIDE=10
      62             : \endplumedfile
      63             : 
      64             : Here, \@phi-3 tells plumed that you would like to calculate the \f$\phi\f$ angle in the third residue of the protein.
      65             : Similarly \@psi-4 tells plumed that you want to calculate the \f$\psi\f$ angle of the 4th residue of the protein.
      66             : 
      67             : Both of the previous examples specify that the torsion angle should be calculated based on the position of four atoms.
      68             : For the first example in particular the assumption when the torsion is specified in this way is that there are chemical
      69             : bonds between atoms 1 and 2, atoms 2 and 3 and atoms 3 and 4. In general, however, a torsional angle measures the angle
      70             : between two planes, which have at least one vector in common.  As shown below, there is thus an alternate, more general, way
      71             : through which we can define a torsional angle:
      72             : 
      73             : \plumedfile
      74             : t1: TORSION VECTOR1=1,2 AXIS=3,4 VECTOR2=5,6
      75             : PRINT ARG=t1 FILE=colvar STRIDE=20
      76             : \endplumedfile
      77             : 
      78             : This input instructs PLUMED to calculate the angle between the plane containing the vector connecting atoms 1 and 2 and the vector
      79             : connecting atoms 3 and 4 and the plane containing this second vector and the vector connecting atoms 5 and 6.  We can even use
      80             : PLUMED to calculate the torsional angle between two bond vectors around the z-axis as shown below:
      81             : 
      82             : \plumedfile
      83             : a0: FIXEDATOM AT=0,0,0
      84             : az: FIXEDATOM AT=0,0,1
      85             : t1: TORSION VECTOR1=1,2 AXIS=a0,az VECTOR2=5,6
      86             : PRINT ARG=t1 FILE=colvar STRIDE=20
      87             : \endplumedfile
      88             : 
      89             : 
      90             : */
      91             : //+ENDPLUMEDOC
      92             : 
      93         872 : class Torsion : public Colvar {
      94             :   bool pbc;
      95             :   bool do_cosine;
      96             : 
      97             : public:
      98             :   explicit Torsion(const ActionOptions&);
      99             : // active methods:
     100             :   virtual void calculate();
     101             :   static void registerKeywords(Keywords& keys);
     102             : };
     103             : 
     104        5259 : PLUMED_REGISTER_ACTION(Torsion,"TORSION")
     105             : 
     106         439 : void Torsion::registerKeywords(Keywords& keys) {
     107         439 :   Colvar::registerKeywords( keys );
     108         439 :   keys.add("atoms-1","ATOMS","the four atoms involved in the torsional angle");
     109         439 :   keys.add("atoms-2","AXIS","two atoms that define an axis.  You can use this to find the angle in the plane perpendicular to the axis between the vectors specified using the VECTOR1 and VECTOR2 keywords.");
     110         439 :   keys.add("atoms-2","VECTOR1","two atoms that define a vector.  You can use this in combination with VECTOR2 and AXIS");
     111         439 :   keys.add("atoms-2","VECTOR2","two atoms that define a vector.  You can use this in combination with VECTOR1 and AXIS");
     112         439 :   keys.addFlag("COSINE",false,"calculate cosine instead of dihedral");
     113         439 : }
     114             : 
     115         438 : Torsion::Torsion(const ActionOptions&ao):
     116             :   PLUMED_COLVAR_INIT(ao),
     117             :   pbc(true),
     118         440 :   do_cosine(false)
     119             : {
     120         876 :   vector<AtomNumber> atoms,v1,v2,axis;
     121         438 :   parseAtomList("ATOMS",atoms);
     122         438 :   parseAtomList("VECTOR1",v1);
     123         438 :   parseAtomList("VECTOR2",v2);
     124         438 :   parseAtomList("AXIS",axis);
     125             : 
     126         438 :   parseFlag("COSINE",do_cosine);
     127             : 
     128         438 :   bool nopbc=!pbc;
     129         438 :   parseFlag("NOPBC",nopbc);
     130         438 :   pbc=!nopbc;
     131         438 :   checkRead();
     132             : 
     133         438 :   if(atoms.size()==4) {
     134         431 :     if(!(v1.empty() && v2.empty() && axis.empty()))
     135           2 :       error("ATOMS keyword is not compatible with VECTOR1, VECTOR2 and AXIS keywords");
     136         430 :     log.printf("  between atoms %d %d %d %d\n",atoms[0].serial(),atoms[1].serial(),atoms[2].serial(),atoms[3].serial());
     137         430 :     atoms.resize(6);
     138         430 :     atoms[5]=atoms[3];
     139         430 :     atoms[4]=atoms[2];
     140         430 :     atoms[3]=atoms[2];
     141         430 :     atoms[2]=atoms[1];
     142           7 :   } else if(atoms.empty()) {
     143           6 :     if(!(v1.size()==2 && v2.size()==2 && axis.size()==2))
     144           0 :       error("VECTOR1, VECTOR2 and AXIS should specify 2 atoms each");
     145             :     log.printf("  between lines %d-%d and %d-%d, projected on the plane orthogonal to line %d-%d\n",
     146           6 :                v1[0].serial(),v1[1].serial(),v2[0].serial(),v2[1].serial(),axis[0].serial(),axis[1].serial());
     147           6 :     atoms.resize(6);
     148           6 :     atoms[0]=v1[1];
     149           6 :     atoms[1]=v1[0];
     150           6 :     atoms[2]=axis[0];
     151           6 :     atoms[3]=axis[1];
     152           6 :     atoms[4]=v2[0];
     153           6 :     atoms[5]=v2[1];
     154           2 :   } else error("ATOMS should specify 4 atoms");
     155             : 
     156         436 :   if(pbc) log.printf("  using periodic boundary conditions\n");
     157         104 :   else    log.printf("  without periodic boundary conditions\n");
     158             : 
     159         436 :   if(do_cosine) log.printf("  calculating cosine instead of torsion\n");
     160             : 
     161         436 :   addValueWithDerivatives();
     162         436 :   if(!do_cosine) setPeriodic("-pi","pi");
     163           0 :   else setNotPeriodic();
     164         874 :   requestAtoms(atoms);
     165         436 : }
     166             : 
     167             : // calculator
     168       23955 : void Torsion::calculate() {
     169             : 
     170       23955 :   Vector d0,d1,d2;
     171       23955 :   if(pbc) makeWhole();
     172       23955 :   d0=delta(getPosition(1),getPosition(0));
     173       23955 :   d1=delta(getPosition(3),getPosition(2));
     174       23955 :   d2=delta(getPosition(5),getPosition(4));
     175       23955 :   Vector dd0,dd1,dd2;
     176             :   PLMD::Torsion t;
     177       23955 :   double torsion=t.compute(d0,d1,d2,dd0,dd1,dd2);
     178       23955 :   if(do_cosine) {
     179           0 :     dd0 *= -sin(torsion);
     180           0 :     dd1 *= -sin(torsion);
     181           0 :     dd2 *= -sin(torsion);
     182           0 :     torsion = cos(torsion);
     183             :   }
     184       23955 :   setAtomsDerivatives(0,dd0);
     185       23955 :   setAtomsDerivatives(1,-dd0);
     186       23955 :   setAtomsDerivatives(2,dd1);
     187       23955 :   setAtomsDerivatives(3,-dd1);
     188       23955 :   setAtomsDerivatives(4,dd2);
     189       23955 :   setAtomsDerivatives(5,-dd2);
     190             : 
     191       23955 :   setValue           (torsion);
     192       23955 :   setBoxDerivativesNoPbc();
     193       23955 : }
     194             : 
     195             : }
     196        4821 : }
     197             : 
     198             : 
     199             : 

Generated by: LCOV version 1.13