LCOV - code coverage report
Current view: top level - ves - VesDeltaF.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 341 351 97.2 %
Date: 2019-08-13 10:15:31 Functions: 14 15 93.3 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2018 The VES code team
       3             :    (see the PEOPLE-VES file at the root of this folder for a list of names)
       4             : 
       5             :    See http://www.ves-code.org for more information.
       6             : 
       7             :    This file is part of VES code module.
       8             : 
       9             :    The VES code module is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    The VES code module is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with the VES code module.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : 
      23             : #include "bias/Bias.h"
      24             : #include "core/PlumedMain.h"
      25             : #include "core/ActionRegister.h"
      26             : #include "core/Atoms.h"
      27             : #include "tools/Communicator.h"
      28             : #include "tools/Grid.h"
      29             : #include "tools/File.h"
      30             : //#include <algorithm> //std::fill
      31             : 
      32             : namespace PLMD {
      33             : namespace ves {
      34             : 
      35             : //+PLUMEDOC VES_BIAS VES_DELTA_F
      36             : /*
      37             : Implementation of VES\f$\Delta F\f$ method \cite Invernizzi2019vesdeltaf (step two only).
      38             : 
      39             : \warning
      40             :   Notice that this is a stand-alone bias Action, it does not need any of the other VES module components
      41             : 
      42             : First you should create some estimate of the local free energy basins of your system,
      43             : using e.g. multiple \ref METAD short runs, and combining them with the \ref sum_hills utility.
      44             : Once you have them, you can use this bias Action to perform the VES optimization part of the method.
      45             : 
      46             : These \f$N+1\f$ local basins are used to model the global free energy.
      47             : In particular, given the conditional probabilities \f$P(\mathbf{s}|i)\propto e^{-\beta F_i(\mathbf{s})}\f$
      48             : and the probabilities of being in a given basin \f$P_i\f$, we can write:
      49             : \f[
      50             :   e^{-\beta F(\mathbf{s})}\propto P(\mathbf{s})=\sum_{i=0}^N P(\mathbf{s}|i)P_i \, .
      51             : \f]
      52             : We use this free energy model and the chosen bias factor \f$\gamma\f$ to build the bias potential:
      53             : \f$V(\mathbf{s})=-(1-1/\gamma)F(\mathbf{s})\f$.
      54             : Or, more explicitly:
      55             : \f[
      56             :   V(\mathbf{s})=(1-1/\gamma)\frac{1}{\beta}\log\left[e^{-\beta F_0(\mathbf{s})}
      57             :   +\sum_{i=1}^{N} e^{-\beta F_i(\mathbf{s})} e^{-\beta \alpha_i}\right] \, ,
      58             : \f]
      59             : where the parameters \f$\boldsymbol{\alpha}\f$ are the \f$N\f$ free energy differences (see below) from the \f$F_0\f$ basin.
      60             : 
      61             : By default the \f$F_i(\mathbf{s})\f$ are shifted so that \f$\min[F_i(\mathbf{s})]=0\f$ for all \f$i=\{0,...,N\}\f$.
      62             : In this case the optimization parameters \f$\alpha_i\f$ are the difference in height between the minima of the basins.
      63             : Using the keyword `NORMALIZE`, you can also decide to normalize the local free energies so that
      64             : \f$\int d\mathbf{s}\, e^{-\beta F_i(\mathbf{s})}=1\f$.
      65             : In this case the parameters will represent not the difference in height (which depends on the chosen CVs),
      66             : but the actual free energy difference, \f$\alpha_i=\Delta F_i\f$.
      67             : 
      68             : However, as discussed in Ref. \cite Invernizzi2019vesdeltaf, a better estimate of \f$\Delta F_i\f$ should be obtained through the reweighting procedure.
      69             : 
      70             : \par Examples
      71             : 
      72             : The following performs the optimization of the free energy difference between two metastable basins:
      73             : 
      74             : \plumedfile
      75             : VES_DELTA_F ...
      76             :   LABEL=ves
      77             :   ARG=cv
      78             :   TEMP=300
      79             :   FILE_F0=../fesA.data
      80             :   FILE_F1=../fesB.data
      81             :   BIASFACTOR=10.0
      82             :   M_STEP=0.1
      83             :   AV_STRIDE=500
      84             :   PRINT_STRIDE=100
      85             : ... VES_DELTA_F
      86             : 
      87             : PRINT FMT=%g STRIDE=500 FILE=Colvar.data ARG=cv,ves.bias,ves.rct
      88             : \endplumedfile
      89             : 
      90             : The local FES files can be obtained as described in Sec. 4.2 of Ref. \cite Invernizzi2019vesdeltaf, i.e. for example:
      91             : - run 4 indipendent MetaD runs, all starting from basin A, and kill them as soon as they make the first transition (see e.g. \ref COMMITTOR)
      92             : - \verbatim cat HILLS* > all_HILLS \endverbatim
      93             : - \verbatim plumed sum_hills --hills all_HILLS --oufile all_fesA.dat --mintozero --min -1 --max 1 --bin 100 \endverbatim
      94             : - \verbatim awk -v n_rep=4 '{if($1!="#!" && $1!="") {for(i=1+(NF-1)/2; i<=NF; i++) $i/=n_rep;} print $0}' all_fesA.dat > fesA.data \endverbatim
      95             : 
      96             : The header of the file should be similar to the following:
      97             : 
      98             : \verbatim
      99             : #! FIELDS cv file.free der_cv
     100             : #! SET min_cv -1
     101             : #! SET max_cv 1
     102             : #! SET nbins_cv  100
     103             : #! SET periodic_cv false
     104             : \endverbatim
     105             : 
     106             : */
     107             : //+ENDPLUMEDOC
     108             : 
     109          16 : class VesDeltaF : public bias::Bias {
     110             : 
     111             : private:
     112             :   double beta_;
     113             :   unsigned NumParallel_;
     114             :   unsigned rank_;
     115             :   unsigned NumWalkers_;
     116             :   bool isFirstStep_;
     117             : 
     118             : //local basins
     119             :   std::vector< std::unique_ptr<Grid> > grid_p_; //pointers because of GridBase::create
     120             :   std::vector<double> norm_;
     121             : 
     122             : //optimizer-related stuff
     123             :   long unsigned mean_counter_;
     124             :   unsigned mean_weight_tau_;
     125             :   unsigned alpha_size_;
     126             :   unsigned sym_alpha_size_;
     127             :   std::vector<double> mean_alpha_;
     128             :   std::vector<double> inst_alpha_;
     129             :   std::vector<double> past_increment2_;
     130             :   double minimization_step_;
     131             :   bool damping_off_;
     132             : //'tg' -> 'target distribution'
     133             :   double inv_gamma_;
     134             :   unsigned tg_counter_;
     135             :   unsigned tg_stride_;
     136             :   std::vector<double> tg_dV_dAlpha_;
     137             :   std::vector<double> tg_d2V_dAlpha2_;
     138             : //'av' -> 'ensemble average'
     139             :   unsigned av_counter_;
     140             :   unsigned av_stride_;
     141             :   std::vector<double> av_dV_dAlpha_;
     142             :   std::vector<double> av_dV_dAlpha_prod_;
     143             :   std::vector<double> av_d2V_dAlpha2_;
     144             : //printing
     145             :   unsigned print_stride_;
     146             :   OFile alphaOfile_;
     147             : //other
     148             :   std::vector<double> exp_alpha_;
     149             :   std::vector<double> prev_exp_alpha_;
     150             :   double work_;
     151             : 
     152             : //functions
     153             :   void update_alpha();
     154             :   void update_tg_and_rct();
     155             :   inline unsigned get_index(const unsigned, const unsigned) const;
     156             : 
     157             : public:
     158             :   explicit VesDeltaF(const ActionOptions&);
     159             :   void calculate();
     160             :   void update();
     161             :   static void registerKeywords(Keywords& keys);
     162             : };
     163             : 
     164        7840 : PLUMED_REGISTER_ACTION(VesDeltaF,"VES_DELTA_F")
     165             : 
     166           5 : void VesDeltaF::registerKeywords(Keywords& keys) {
     167           5 :   Bias::registerKeywords(keys);
     168          10 :   keys.use("ARG");
     169          20 :   keys.add("optional","TEMP","temperature is compulsory, but it can be sometimes fetched from the MD engine");
     170             : //local free energies
     171             :   keys.add("numbered","FILE_F","names of files containing local free energies and derivatives. "
     172          20 :            "The first one, FILE_F0, is used as reference for all the free energy differences.");
     173          15 :   keys.reset_style("FILE_F","compulsory");
     174          15 :   keys.addFlag("NORMALIZE",false,"normalize all local free energies so that alpha will be (approx) \\f$\\Delta F\\f$");
     175          15 :   keys.addFlag("NO_MINTOZERO",false,"leave local free energies as provided, without shifting them to zero min");
     176             : //target distribution
     177             :   keys.add("compulsory","BIASFACTOR","0","the \\f$\\gamma\\f$ bias factor used for well-tempered target \\f$p(\\mathbf{s})\\f$."
     178          25 :            " Set to 0 for non-tempered flat target");
     179             :   keys.add("optional","TG_STRIDE","( default=1 ) number of AV_STRIDEs between updates"
     180          20 :            " of target \\f$p(\\mathbf{s})\\f$ and reweighing factor \\f$c(t)\\f$");
     181             : //optimization
     182          25 :   keys.add("compulsory","M_STEP","1.0","the \\f$\\mu\\f$ step used for the \\f$\\Omega\\f$ functional minimization");
     183          25 :   keys.add("compulsory","AV_STRIDE","500","number of simulation steps between alpha updates");
     184             :   keys.add("optional","TAU_MEAN","exponentially decaying average for alpha (rescaled using AV_STRIDE)."
     185          20 :            " Should be used only in very specific cases");
     186          20 :   keys.add("optional","INITIAL_ALPHA","( default=0 ) an initial guess for the bias potential parameter alpha");
     187          15 :   keys.addFlag("DAMPING_OFF",false,"do not use an AdaGrad-like term to rescale M_STEP");
     188             : //output parameters file
     189          25 :   keys.add("compulsory","ALPHA_FILE","ALPHA","file name for output minimization parameters");
     190          20 :   keys.add("optional","PRINT_STRIDE","( default=10 ) stride for printing to ALPHA_FILE");
     191          20 :   keys.add("optional","FMT","specify format for ALPHA_FILE");
     192             : //debug flags
     193          15 :   keys.addFlag("SERIAL",false,"perform the calculation in serial even if multiple tasks are available");
     194          15 :   keys.addFlag("MULTIPLE_WALKERS",false,"use multiple walkers connected via MPI for the optimization");
     195          10 :   keys.use("RESTART");
     196             : 
     197             : //output components
     198           5 :   componentsAreNotOptional(keys);
     199          20 :   keys.addOutputComponent("rct","default","the reweighting factor \\f$c(t)\\f$");
     200          20 :   keys.addOutputComponent("work","default","the work done by the bias in one AV_STRIDE");
     201           5 : }
     202             : 
     203           4 : VesDeltaF::VesDeltaF(const ActionOptions&ao)
     204             :   : PLUMED_BIAS_INIT(ao)
     205             :   , isFirstStep_(true)
     206             :   , mean_counter_(0)
     207             :   , av_counter_(0)
     208          20 :   , work_(0)
     209             : {
     210             : //set beta
     211           8 :   const double Kb=plumed.getAtoms().getKBoltzmann();
     212           4 :   double temp=0;
     213           8 :   parse("TEMP",temp);
     214           4 :   double KbT=Kb*temp;
     215           4 :   if(KbT==0)
     216             :   {
     217           0 :     KbT=plumed.getAtoms().getKbT();
     218           0 :     plumed_massert(KbT>0,"your MD engine does not pass the temperature to plumed, you must specify it using TEMP");
     219             :   }
     220           4 :   beta_=1.0/KbT;
     221             : 
     222             : //initialize probability grids using local free energies
     223             :   bool spline=true;
     224             :   bool sparsegrid=false;
     225           4 :   std::string funcl="file.free"; //typical name given by sum_hills
     226             : 
     227           4 :   std::vector<std::string> fes_names;
     228           8 :   for(unsigned n=0;; n++)//NB: here we start from FILE_F0 not from FILE_F1
     229             :   {
     230             :     std::string filename;
     231          24 :     if(!parseNumbered("FILE_F",n,filename))
     232             :       break;
     233           8 :     fes_names.push_back(filename);
     234          16 :     IFile gridfile;
     235           8 :     gridfile.open(filename);
     236           8 :     auto g=GridBase::create(funcl,getArguments(),gridfile,sparsegrid,spline,true);
     237             : // we assume this cannot be sparse. in case we want it to be sparse, some of the methods
     238             : // that are available only in Grid should be ported to GridBase
     239           8 :     auto gg=dynamic_cast<Grid*>(g.get());
     240             : // if this throws, g is deleted
     241           8 :     plumed_assert(gg);
     242             : // release ownership in order to transfer it to emplaced pointer
     243             :     g.release();
     244           8 :     grid_p_.emplace_back(gg);
     245           8 :   }
     246           4 :   plumed_massert(grid_p_.size()>1,"at least 2 basins must be defined, starting from FILE_F0");
     247           4 :   alpha_size_=grid_p_.size()-1;
     248           4 :   sym_alpha_size_=alpha_size_*(alpha_size_+1)/2; //useful for symmetric matrix [alpha_size_]x[alpha_size_]
     249             :   //check for consistency with first local free energy
     250          16 :   for(unsigned n=1; n<grid_p_.size(); n++)
     251             :   {
     252          16 :     std::string error_tag="FILE_F"+std::to_string(n)+" '"+fes_names[n]+"' not compatible with reference one, FILE_F0";
     253           8 :     plumed_massert(grid_p_[n]->getSize()==grid_p_[0]->getSize(),error_tag);
     254           8 :     plumed_massert(grid_p_[n]->getMin()==grid_p_[0]->getMin(),error_tag);
     255           8 :     plumed_massert(grid_p_[n]->getMax()==grid_p_[0]->getMax(),error_tag);
     256           8 :     plumed_massert(grid_p_[n]->getBinVolume()==grid_p_[0]->getBinVolume(),error_tag);
     257             :   }
     258             : 
     259           4 :   bool no_mintozero=false;
     260           8 :   parseFlag("NO_MINTOZERO",no_mintozero);
     261           4 :   if(!no_mintozero)
     262             :   {
     263          10 :     for(unsigned n=0; n<grid_p_.size(); n++)
     264           4 :       grid_p_[n]->setMinToZero();
     265             :   }
     266           4 :   bool normalize=false;
     267           8 :   parseFlag("NORMALIZE",normalize);
     268           8 :   norm_.resize(grid_p_.size(),0);
     269           4 :   std::vector<double> c_norm(grid_p_.size());
     270             :   //convert the FESs to probability distributions
     271             :   //NB: the spline interpolation will be done on the probability distributions, not on the given FESs
     272             :   const unsigned ncv=getNumberOfArguments(); //just for ease
     273          24 :   for(unsigned n=0; n<grid_p_.size(); n++)
     274             :   {
     275        1608 :     for(Grid::index_t t=0; t<grid_p_[n]->getSize(); t++)
     276             :     {
     277         800 :       std::vector<double> der(ncv);
     278        1600 :       const double val=std::exp(-beta_*grid_p_[n]->getValueAndDerivatives(t,der));
     279        1600 :       for(unsigned s=0; s<ncv; s++)
     280        1600 :         der[s]*=-beta_*val;
     281         800 :       grid_p_[n]->setValueAndDerivatives(t,val,der);
     282         800 :       norm_[n]+=val;
     283             :     }
     284          16 :     c_norm[n]=1./beta_*std::log(norm_[n]);
     285           8 :     if(normalize)
     286             :     {
     287           8 :       grid_p_[n]->scaleAllValuesAndDerivatives(1./norm_[n]);
     288           4 :       norm_[n]=1;
     289             :     }
     290             :   }
     291             : 
     292             : //get target
     293           4 :   double biasfactor=0;
     294           8 :   parse("BIASFACTOR",biasfactor);
     295           4 :   plumed_massert(biasfactor==0 || biasfactor>1,"BIASFACTOR must be zero (for uniform target) or greater than one");
     296           4 :   if(biasfactor==0)
     297           2 :     inv_gamma_=0;
     298             :   else
     299           2 :     inv_gamma_=1./biasfactor;
     300           4 :   tg_counter_=0;
     301           4 :   tg_stride_=1;
     302           8 :   parse("TG_STRIDE",tg_stride_);
     303           4 :   tg_dV_dAlpha_.resize(alpha_size_,0);
     304           4 :   tg_d2V_dAlpha2_.resize(sym_alpha_size_,0);
     305             : 
     306             : //setup optimization stuff
     307           4 :   minimization_step_=1;
     308           8 :   parse("M_STEP",minimization_step_);
     309             : 
     310           4 :   av_stride_=500;
     311           8 :   parse("AV_STRIDE",av_stride_);
     312           4 :   av_dV_dAlpha_.resize(alpha_size_,0);
     313           4 :   av_dV_dAlpha_prod_.resize(sym_alpha_size_,0);
     314           4 :   av_d2V_dAlpha2_.resize(sym_alpha_size_,0);
     315             : 
     316           4 :   mean_weight_tau_=0;
     317           8 :   parse("TAU_MEAN",mean_weight_tau_);
     318           4 :   if(mean_weight_tau_!=1) //set it to 1 for basic SGD
     319             :   {
     320           4 :     plumed_massert((mean_weight_tau_==0 || mean_weight_tau_>av_stride_),"TAU_MEAN is rescaled with AV_STRIDE, so it has to be greater");
     321           4 :     mean_weight_tau_/=av_stride_; //this way you can look at the number of simulation steps to choose TAU_MEAN
     322             :   }
     323             : 
     324           8 :   parseVector("INITIAL_ALPHA",mean_alpha_);
     325           4 :   if(mean_alpha_.size()>0)
     326             :   {
     327           2 :     plumed_massert(mean_alpha_.size()==alpha_size_,"provide one INITIAL_ALPHA for each basin beyond the first one");
     328             :   }
     329             :   else
     330           2 :     mean_alpha_.resize(alpha_size_,0);
     331           4 :   inst_alpha_=mean_alpha_;
     332           4 :   exp_alpha_.resize(alpha_size_);
     333           4 :   for(unsigned i=0; i<alpha_size_; i++)
     334          12 :     exp_alpha_[i]=std::exp(-beta_*mean_alpha_[i]);
     335           4 :   prev_exp_alpha_=exp_alpha_;
     336             : 
     337           4 :   damping_off_=false;
     338           8 :   parseFlag("DAMPING_OFF",damping_off_);
     339           4 :   if(damping_off_)
     340           2 :     past_increment2_.resize(alpha_size_,1);
     341             :   else
     342           2 :     past_increment2_.resize(alpha_size_,0);
     343             : 
     344             : //file printing options
     345           4 :   std::string alphaFileName("ALPHA");
     346           8 :   parse("ALPHA_FILE",alphaFileName);
     347           4 :   print_stride_=10;
     348           8 :   parse("PRINT_STRIDE",print_stride_);
     349             :   std::string fmt;
     350           8 :   parse("FMT",fmt);
     351             : 
     352             : //other flags, mainly for debugging
     353           4 :   NumParallel_=comm.Get_size();
     354           4 :   rank_=comm.Get_rank();
     355           4 :   bool serial=false;
     356           8 :   parseFlag("SERIAL",serial);
     357           4 :   if(serial)
     358             :   {
     359           2 :     log.printf(" -- SERIAL: running without loop parallelization\n");
     360           2 :     NumParallel_=1;
     361           2 :     rank_=0;
     362             :   }
     363             : 
     364           4 :   bool multiple_walkers=false;
     365           8 :   parseFlag("MULTIPLE_WALKERS",multiple_walkers);
     366           4 :   if(!multiple_walkers)
     367           2 :     NumWalkers_=1;
     368             :   else
     369             :   {
     370           2 :     if(comm.Get_rank()==0)//multi_sim_comm works well on first rank only
     371           2 :       NumWalkers_=multi_sim_comm.Get_size();
     372           2 :     if(comm.Get_size()>1) //if each walker has more than one processor update them all
     373           0 :       comm.Bcast(NumWalkers_,0);
     374             :   }
     375             : 
     376           4 :   checkRead();
     377             : 
     378             : //restart if needed
     379           4 :   if(getRestart())
     380             :   {
     381           2 :     IFile ifile;
     382           2 :     ifile.link(*this);
     383           2 :     if(NumWalkers_>1)
     384           4 :       ifile.enforceSuffix("");
     385           2 :     if(ifile.FileExist(alphaFileName))
     386             :     {
     387           2 :       log.printf("  Restarting from: %s\n",alphaFileName.c_str());
     388           2 :       log.printf("    all options (also PRINT_STRIDE) must be consistent!\n");
     389           2 :       log.printf("    any INITIAL_ALPHA will be overwritten\n");
     390           2 :       ifile.open(alphaFileName);
     391             :       double time;
     392           2 :       std::vector<double> damping(alpha_size_);
     393          22 :       while(ifile.scanField("time",time)) //room for improvements: only last line is important
     394             :       {
     395          16 :         for(unsigned i=0; i<alpha_size_; i++)
     396             :         {
     397           8 :           const std::string index(std::to_string(i+1));
     398          24 :           prev_exp_alpha_[i]=std::exp(-beta_*mean_alpha_[i]);
     399          16 :           ifile.scanField("alpha_"+index,mean_alpha_[i]);
     400          16 :           ifile.scanField("auxiliary_"+index,inst_alpha_[i]);
     401          16 :           ifile.scanField("damping_"+index,damping[i]);
     402             :         }
     403           8 :         ifile.scanField();
     404           8 :         mean_counter_+=print_stride_;
     405             :       }
     406           2 :       for(unsigned i=0; i<alpha_size_; i++)
     407             :       {
     408           6 :         exp_alpha_[i]=std::exp(-beta_*mean_alpha_[i]);
     409           2 :         past_increment2_[i]=damping[i]*damping[i];
     410             :       }
     411             :       //sync all walkers and treads. Not sure is mandatory but is no harm
     412           2 :       comm.Barrier();
     413           2 :       if(comm.Get_rank()==0)
     414           2 :         multi_sim_comm.Barrier();
     415             :     }
     416             :     else
     417           0 :       log.printf("  -- WARNING: restart requested, but no '%s' file found!\n",alphaFileName.c_str());
     418             :   }
     419             : 
     420             : //setup output file with Alpha values
     421           4 :   alphaOfile_.link(*this);
     422           4 :   if(NumWalkers_>1)
     423             :   {
     424           2 :     if(comm.Get_rank()==0 && multi_sim_comm.Get_rank()>0)
     425             :       alphaFileName="/dev/null"; //only first walker writes on file
     426           4 :     alphaOfile_.enforceSuffix("");
     427             :   }
     428           4 :   alphaOfile_.open(alphaFileName);
     429           4 :   if(fmt.length()>0)
     430           8 :     alphaOfile_.fmtField(" "+fmt);
     431             : 
     432             : //add other output components
     433          12 :   addComponent("rct"); componentIsNotPeriodic("rct");
     434          12 :   addComponent("work"); componentIsNotPeriodic("work");
     435             : 
     436             : //print some info
     437           4 :   log.printf("  Temperature T: %g\n",1./(Kb*beta_));
     438           4 :   log.printf("  Beta (1/Kb*T): %g\n",beta_);
     439           4 :   log.printf("  Local free energy basins files and normalization constants:\n");
     440          20 :   for(unsigned n=0; n<grid_p_.size(); n++)
     441          16 :     log.printf("    F_%d filename: %s  c_%d=%g\n",n,fes_names[n].c_str(),n,c_norm[n]);
     442           4 :   if(no_mintozero)
     443           2 :     log.printf(" -- NO_MINTOZERO: local free energies are not shifted to be zero at minimum\n");
     444           4 :   if(normalize)
     445           2 :     log.printf(" -- NORMALIZE: F_n+=c_n, alpha=DeltaF\n");
     446           4 :   log.printf("  Using target distribution with 1/gamma = %g\n",inv_gamma_);
     447           4 :   log.printf("    and updated with stride %d\n",tg_stride_);
     448           4 :   log.printf("  Step for the minimization algorithm: %g\n",minimization_step_);
     449           4 :   log.printf("  Stride for the ensemble average: %d\n",av_stride_);
     450           4 :   if(mean_weight_tau_>1)
     451           2 :     log.printf("  Exponentially decaying average with weight=tau/av_stride=%d\n",mean_weight_tau_);
     452           4 :   if(mean_weight_tau_==1)
     453           0 :     log.printf(" +++ WARNING +++ setting TAU_MEAN=1 is equivalent to use simple SGD, without mean alpha nor hessian contribution\n");
     454           4 :   log.printf("  Initial guess for alpha:\n");
     455           8 :   for(unsigned i=0; i<alpha_size_; i++)
     456           8 :     log.printf("    alpha_%d = %g\n",i+1,mean_alpha_[i]);
     457           4 :   if(damping_off_)
     458           2 :     log.printf(" -- DAMPING_OFF: the minimization step will NOT become smaller as the simulation goes on\n");
     459           8 :   log.printf("  Printing on file %s with stride %d\n",alphaFileName.c_str(),print_stride_);
     460           4 :   if(serial)
     461           2 :     log.printf(" -- SERIAL: running without loop parallelization\n");
     462           4 :   if(NumParallel_>1)
     463           2 :     log.printf("  Using multiple threads per simulation: %d\n",NumParallel_);
     464           4 :   if(multiple_walkers)
     465             :   {
     466           2 :     log.printf(" -- MULTIPLE_WALKERS: multiple simulations will combine statistics for the optimization\n");
     467           2 :     if(NumWalkers_>1)
     468             :     {
     469           2 :       log.printf("    number of walkers: %d\n",NumWalkers_);
     470           2 :       log.printf("    walker rank: %d\n",multi_sim_comm.Get_rank()); //only comm.Get_rank()=0 prints, so this is fine
     471             :     }
     472             :     else
     473           0 :       log.printf(" +++ WARNING +++ only one replica found: are you sure you are running MPI-connected simulations?\n");
     474             :   }
     475           4 :   log.printf(" Bibliography ");
     476          12 :   log<<plumed.cite("Invernizzi and Parrinello, J. Chem. Theory Comput. 15, 2187-2194 (2019)");
     477          12 :   log<<plumed.cite("Valsson and Parrinello, Phys. Rev. Lett. 113, 090601 (2014)");
     478           4 :   if(inv_gamma_>0)
     479           6 :     log<<plumed.cite("Valsson and Parrinello, J. Chem. Theory Comput. 11, 1996-2002 (2015)");
     480             : 
     481             : //set initial value for tg averages and rct
     482           4 :   update_tg_and_rct();
     483           4 : }
     484             : 
     485         804 : void VesDeltaF::calculate()
     486             : {
     487             : //get CVs
     488         804 :   const unsigned ncv=getNumberOfArguments(); //just for ease
     489         804 :   std::vector<double> cv(ncv);
     490        1608 :   for(unsigned s=0; s<ncv; s++)
     491        1608 :     cv[s]=getArgument(s);
     492             : //get probabilities for each basin, and total one
     493         804 :   std::vector<double> prob(grid_p_.size());
     494        3212 :   std::vector< std::vector<double> > der_prob(grid_p_.size(),std::vector<double>(ncv));
     495        4824 :   for(unsigned n=0; n<grid_p_.size(); n++)
     496        1608 :     prob[n]=grid_p_[n]->getValueAndDerivatives(cv,der_prob[n]);
     497         804 :   double tot_prob=prob[0];
     498        2412 :   for(unsigned i=0; i<alpha_size_; i++)
     499        2412 :     tot_prob+=prob[i+1]*exp_alpha_[i];
     500             : 
     501             : //update bias and forces: V=-(1-inv_gamma_)*fes
     502         804 :   setBias((1-inv_gamma_)/beta_*std::log(tot_prob));
     503         804 :   for(unsigned s=0; s<ncv; s++)
     504             :   {
     505        1608 :     double dProb_dCV_s=der_prob[0][s];
     506        2412 :     for(unsigned i=0; i<alpha_size_; i++)
     507        2412 :       dProb_dCV_s+=der_prob[i+1][s]*exp_alpha_[i];
     508         804 :     setOutputForce(s,-(1-inv_gamma_)/beta_/tot_prob*dProb_dCV_s);
     509             :   }
     510             : //skip first step to sync getTime() and av_counter_, as in METAD
     511         804 :   if(isFirstStep_)
     512             :   {
     513           4 :     isFirstStep_=false;
     514         808 :     return;
     515             :   }
     516             : 
     517             : //calculate derivatives for ensemble averages
     518         800 :   std::vector<double> dV_dAlpha(alpha_size_);
     519         800 :   std::vector<double> d2V_dAlpha2(sym_alpha_size_);
     520        2400 :   for(unsigned i=0; i<alpha_size_; i++)
     521        3200 :     dV_dAlpha[i]=-(1-inv_gamma_)/tot_prob*prob[i+1]*exp_alpha_[i];
     522         800 :   for(unsigned i=0; i<alpha_size_; i++)
     523             :   {
     524        2400 :     d2V_dAlpha2[get_index(i,i)]=-beta_*dV_dAlpha[i];
     525        1600 :     for(unsigned j=i; j<alpha_size_; j++)
     526        3200 :       d2V_dAlpha2[get_index(i,j)]-=beta_/(1-inv_gamma_)*dV_dAlpha[i]*dV_dAlpha[j];
     527             :   }
     528             : //update ensemble averages
     529         800 :   av_counter_++;
     530        1600 :   for(unsigned i=0; i<alpha_size_; i++)
     531             :   {
     532        2400 :     av_dV_dAlpha_[i]+=(dV_dAlpha[i]-av_dV_dAlpha_[i])/av_counter_;
     533        1600 :     for(unsigned j=i; j<alpha_size_; j++)
     534             :     {
     535         800 :       const unsigned ij=get_index(i,j);
     536        2400 :       av_dV_dAlpha_prod_[ij]+=(dV_dAlpha[i]*dV_dAlpha[j]-av_dV_dAlpha_prod_[ij])/av_counter_;
     537        1600 :       av_d2V_dAlpha2_[ij]+=(d2V_dAlpha2[ij]-av_d2V_dAlpha2_[ij])/av_counter_;
     538             :     }
     539             :   }
     540             : //update work
     541         800 :   double prev_tot_prob=prob[0];
     542        2400 :   for(unsigned i=0; i<alpha_size_; i++)
     543        2400 :     prev_tot_prob+=prob[i+1]*prev_exp_alpha_[i];
     544         800 :   work_+=(1-inv_gamma_)/beta_*std::log(tot_prob/prev_tot_prob);
     545             : }
     546             : 
     547         804 : void VesDeltaF::update()
     548             : {
     549         804 :   if(av_counter_==av_stride_)
     550             :   {
     551          16 :     update_alpha();
     552          16 :     tg_counter_++;
     553          16 :     if(tg_counter_==tg_stride_)
     554             :     {
     555          12 :       update_tg_and_rct();
     556          12 :       tg_counter_=0;
     557             :     }
     558             :     //reset the ensemble averages
     559          16 :     av_counter_=0;
     560             :     std::fill(av_dV_dAlpha_.begin(),av_dV_dAlpha_.end(),0);
     561             :     std::fill(av_dV_dAlpha_prod_.begin(),av_dV_dAlpha_prod_.end(),0);
     562             :     std::fill(av_d2V_dAlpha2_.begin(),av_d2V_dAlpha2_.end(),0);
     563             :   }
     564         804 : }
     565             : 
     566          16 : void VesDeltaF::update_tg_and_rct()
     567             : {
     568             : //calculate target averages
     569          16 :   double Z_0=norm_[0];
     570          48 :   for(unsigned i=0; i<alpha_size_; i++)
     571          48 :     Z_0+=norm_[i+1]*exp_alpha_[i];
     572          16 :   double Z_tg=0;
     573             :   std::fill(tg_dV_dAlpha_.begin(),tg_dV_dAlpha_.end(),0);
     574             :   std::fill(tg_d2V_dAlpha2_.begin(),tg_d2V_dAlpha2_.end(),0);
     575        2232 :   for(Grid::index_t t=rank_; t<grid_p_[0]->getSize(); t+=NumParallel_)
     576             :   { //TODO can we recycle some code?
     577        1100 :     std::vector<double> prob(grid_p_.size());
     578        6600 :     for(unsigned n=0; n<grid_p_.size(); n++)
     579        2200 :       prob[n]=grid_p_[n]->getValue(t);
     580        1100 :     double tot_prob=prob[0];
     581        3300 :     for(unsigned i=0; i<alpha_size_; i++)
     582        3300 :       tot_prob+=prob[i+1]*exp_alpha_[i];
     583        1100 :     std::vector<double> dV_dAlpha(alpha_size_);
     584        1100 :     std::vector<double> d2V_dAlpha2(sym_alpha_size_);
     585        3300 :     for(unsigned i=0; i<alpha_size_; i++)
     586        4400 :       dV_dAlpha[i]=-(1-inv_gamma_)/tot_prob*prob[i+1]*exp_alpha_[i];
     587        1100 :     for(unsigned i=0; i<alpha_size_; i++)
     588             :     {
     589        3300 :       d2V_dAlpha2[get_index(i,i)]=-beta_*dV_dAlpha[i];
     590        2200 :       for(unsigned j=i; j<alpha_size_; j++)
     591        4400 :         d2V_dAlpha2[get_index(i,j)]-=beta_/(1-inv_gamma_)*dV_dAlpha[i]*dV_dAlpha[j];
     592             :     }
     593        1100 :     const double unnorm_tg_p=std::pow(tot_prob,inv_gamma_);
     594        1100 :     Z_tg+=unnorm_tg_p;
     595        2200 :     for(unsigned i=0; i<alpha_size_; i++)
     596        3300 :       tg_dV_dAlpha_[i]+=unnorm_tg_p*dV_dAlpha[i];
     597        1100 :     for(unsigned ij=0; ij<sym_alpha_size_; ij++)
     598        3300 :       tg_d2V_dAlpha2_[ij]+=unnorm_tg_p*d2V_dAlpha2[ij];
     599             :   }
     600          16 :   if(NumParallel_>1)
     601             :   {
     602          10 :     comm.Sum(Z_tg);
     603          10 :     comm.Sum(tg_dV_dAlpha_);
     604          10 :     comm.Sum(tg_d2V_dAlpha2_);
     605             :   }
     606          16 :   for(unsigned i=0; i<alpha_size_; i++)
     607          32 :     tg_dV_dAlpha_[i]/=Z_tg;
     608          16 :   for(unsigned ij=0; ij<sym_alpha_size_; ij++)
     609          32 :     tg_d2V_dAlpha2_[ij]/=Z_tg;
     610          32 :   getPntrToComponent("rct")->set(-1./beta_*std::log(Z_tg/Z_0)); //Z_tg is the best available estimate of Z_V
     611          16 : }
     612             : 
     613          16 : void VesDeltaF::update_alpha()
     614             : {
     615             : //combining the averages of multiple walkers
     616          16 :   if(NumWalkers_>1)
     617             :   {
     618           8 :     if(comm.Get_rank()==0) //sum only once: in the first rank of each walker
     619             :     {
     620           8 :       multi_sim_comm.Sum(av_dV_dAlpha_);
     621           8 :       multi_sim_comm.Sum(av_dV_dAlpha_prod_);
     622           8 :       multi_sim_comm.Sum(av_d2V_dAlpha2_);
     623           8 :       for(unsigned i=0; i<alpha_size_; i++)
     624          16 :         av_dV_dAlpha_[i]/=NumWalkers_;
     625           8 :       for(unsigned ij=0; ij<sym_alpha_size_; ij++)
     626             :       {
     627          16 :         av_dV_dAlpha_prod_[ij]/=NumWalkers_;
     628           8 :         av_d2V_dAlpha2_[ij]/=NumWalkers_;
     629             :       }
     630             :     }
     631           8 :     if(comm.Get_size()>1)//if there are more ranks for each walker, everybody has to know
     632             :     {
     633           0 :       comm.Bcast(av_dV_dAlpha_,0);
     634           0 :       comm.Bcast(av_dV_dAlpha_prod_,0);
     635           0 :       comm.Bcast(av_d2V_dAlpha2_,0);
     636             :     }
     637             :   }
     638             :   //set work and reset it
     639          32 :   getPntrToComponent("work")->set(work_);
     640          16 :   work_=0;
     641             : 
     642             : //build the gradient and the Hessian of the functional
     643          16 :   std::vector<double> grad_omega(alpha_size_);
     644          16 :   std::vector<double> hess_omega(sym_alpha_size_);
     645          32 :   for(unsigned i=0; i<alpha_size_; i++)
     646             :   {
     647          48 :     grad_omega[i]=tg_dV_dAlpha_[i]-av_dV_dAlpha_[i];
     648          32 :     for(unsigned j=i; j<alpha_size_; j++)
     649             :     {
     650          16 :       const unsigned ij=get_index(i,j);
     651         112 :       hess_omega[ij]=beta_*(av_dV_dAlpha_prod_[ij]-av_dV_dAlpha_[i]*av_dV_dAlpha_[j])+tg_d2V_dAlpha2_[ij]-av_d2V_dAlpha2_[ij];
     652             :     }
     653             :   }
     654             : //calculate the increment and update alpha
     655          16 :   mean_counter_++;
     656             :   long unsigned mean_weight=mean_counter_;
     657          16 :   if(mean_weight_tau_>0 && mean_weight_tau_<mean_counter_)
     658             :     mean_weight=mean_weight_tau_;
     659          16 :   std::vector<double> damping(alpha_size_);
     660          32 :   for(unsigned i=0; i<alpha_size_; i++)
     661             :   {
     662          32 :     double increment_i=grad_omega[i];
     663          32 :     for(unsigned j=0; j<alpha_size_; j++)
     664          64 :       increment_i+=hess_omega[get_index(i,j)]*(inst_alpha_[j]-mean_alpha_[j]);
     665          16 :     if(!damping_off_)
     666           8 :       past_increment2_[i]+=increment_i*increment_i;
     667          16 :     damping[i]=std::sqrt(past_increment2_[i]);
     668          32 :     prev_exp_alpha_[i]=std::exp(-beta_*mean_alpha_[i]);
     669          48 :     inst_alpha_[i]-=minimization_step_/damping[i]*increment_i;
     670          32 :     mean_alpha_[i]+=(inst_alpha_[i]-mean_alpha_[i])/mean_weight;
     671          32 :     exp_alpha_[i]=std::exp(-beta_*mean_alpha_[i]);
     672             :   }
     673             : 
     674             : //update the Alpha file
     675          16 :   if(mean_counter_%print_stride_==0)
     676             :   {
     677          32 :     alphaOfile_.printField("time",getTime());
     678          48 :     for(unsigned i=0; i<alpha_size_; i++)
     679             :     {
     680          16 :       const std::string index(std::to_string(i+1));
     681          48 :       alphaOfile_.printField("alpha_"+index,mean_alpha_[i]);
     682          32 :       alphaOfile_.printField("auxiliary_"+index,inst_alpha_[i]);
     683          32 :       alphaOfile_.printField("damping_"+index,damping[i]);
     684             :     }
     685          16 :     alphaOfile_.printField();
     686             :   }
     687          16 : }
     688             : 
     689             : //mapping of a [alpha_size_]x[alpha_size_] symmetric matrix into a vector of size sym_alpha_size_, useful for the communicator
     690        4632 : inline unsigned VesDeltaF::get_index(const unsigned i, const unsigned j) const
     691             : {
     692        4632 :   if(i<=j)
     693        4632 :     return j+i*(alpha_size_-1)-i*(i-1)/2;
     694             :   else
     695           0 :     return get_index(j,i);
     696             : }
     697             : 
     698             : }
     699        5874 : }

Generated by: LCOV version 1.14