LCOV - code coverage report
Current view: top level - isdb - MetainferenceBase.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 689 837 82.3 %
Date: 2019-08-13 10:15:31 Functions: 32 37 86.5 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2017-2019 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "MetainferenceBase.h"
      23             : #include "tools/File.h"
      24             : #include <cmath>
      25             : #include <ctime>
      26             : #include <numeric>
      27             : 
      28             : using namespace std;
      29             : 
      30             : #ifndef M_PI
      31             : #define M_PI           3.14159265358979323846
      32             : #endif
      33             : 
      34             : namespace PLMD {
      35             : namespace isdb {
      36             : 
      37          93 : void MetainferenceBase::registerKeywords( Keywords& keys ) {
      38          93 :   Action::registerKeywords(keys);
      39          93 :   ActionAtomistic::registerKeywords(keys);
      40          93 :   ActionWithValue::registerKeywords(keys);
      41          93 :   ActionWithArguments::registerKeywords(keys);
      42          93 :   componentsAreNotOptional(keys);
      43         186 :   keys.use("ARG");
      44         279 :   keys.addFlag("DOSCORE",false,"activate metainference");
      45         279 :   keys.addFlag("NOENSEMBLE",false,"don't perform any replica-averaging");
      46         279 :   keys.addFlag("REWEIGHT",false,"simple REWEIGHT using the ARG as energy");
      47         372 :   keys.add("optional","AVERAGING", "Stride for calculation of averaged weights and sigma_mean");
      48         465 :   keys.add("compulsory","NOISETYPE","MGAUSS","functional form of the noise (GAUSS,MGAUSS,OUTLIERS,MOUTLIERS,GENERIC)");
      49         465 :   keys.add("compulsory","LIKELIHOOD","GAUSS","the likelihood for the GENERIC metainference model, GAUSS or LOGN");
      50         465 :   keys.add("compulsory","DFTILDE","0.1","fraction of sigma_mean used to evolve ftilde");
      51         279 :   keys.addFlag("SCALEDATA",false,"Set to TRUE if you want to sample a scaling factor common to all values and replicas");
      52         465 :   keys.add("compulsory","SCALE0","1.0","initial value of the scaling factor");
      53         465 :   keys.add("compulsory","SCALE_PRIOR","FLAT","either FLAT or GAUSSIAN");
      54         372 :   keys.add("optional","SCALE_MIN","minimum value of the scaling factor");
      55         372 :   keys.add("optional","SCALE_MAX","maximum value of the scaling factor");
      56         372 :   keys.add("optional","DSCALE","maximum MC move of the scaling factor");
      57         279 :   keys.addFlag("ADDOFFSET",false,"Set to TRUE if you want to sample an offset common to all values and replicas");
      58         465 :   keys.add("compulsory","OFFSET0","0.0","initial value of the offset");
      59         465 :   keys.add("compulsory","OFFSET_PRIOR","FLAT","either FLAT or GAUSSIAN");
      60         372 :   keys.add("optional","OFFSET_MIN","minimum value of the offset");
      61         372 :   keys.add("optional","OFFSET_MAX","maximum value of the offset");
      62         372 :   keys.add("optional","DOFFSET","maximum MC move of the offset");
      63         372 :   keys.add("optional","REGRES_ZERO","stride for regression with zero offset");
      64         465 :   keys.add("compulsory","SIGMA0","1.0","initial value of the uncertainty parameter");
      65         465 :   keys.add("compulsory","SIGMA_MIN","0.0","minimum value of the uncertainty parameter");
      66         465 :   keys.add("compulsory","SIGMA_MAX","10.","maximum value of the uncertainty parameter");
      67         372 :   keys.add("optional","DSIGMA","maximum MC move of the uncertainty parameter");
      68         465 :   keys.add("compulsory","OPTSIGMAMEAN","NONE","Set to NONE/SEM to manually set sigma mean, or to estimate it on the fly");
      69         372 :   keys.add("optional","SIGMA_MEAN0","starting value for the uncertainty in the mean estimate");
      70         372 :   keys.add("optional","TEMP","the system temperature - this is only needed if code doesn't pass the temperature to plumed");
      71         372 :   keys.add("optional","MC_STEPS","number of MC steps");
      72         372 :   keys.add("optional","MC_CHUNKSIZE","MC chunksize");
      73         372 :   keys.add("optional","STATUS_FILE","write a file with all the data useful for restart/continuation of Metainference");
      74         465 :   keys.add("compulsory","WRITE_STRIDE","10000","write the status to a file every N steps, this can be used for restart/continuation");
      75         372 :   keys.add("optional","SELECTOR","name of selector");
      76         372 :   keys.add("optional","NSELECT","range of values for selector [0, N-1]");
      77         186 :   keys.use("RESTART");
      78         372 :   keys.addOutputComponent("score",        "default",      "the Metainference score");
      79         372 :   keys.addOutputComponent("sigma",        "default",      "uncertainty parameter");
      80         372 :   keys.addOutputComponent("sigmaMean",    "default",      "uncertainty in the mean estimate");
      81         372 :   keys.addOutputComponent("acceptSigma",  "default",      "MC acceptance for sigma values");
      82         372 :   keys.addOutputComponent("acceptScale",  "SCALEDATA",    "MC acceptance for scale value");
      83         372 :   keys.addOutputComponent("acceptFT",     "GENERIC",      "MC acceptance for general metainference f tilde value");
      84         372 :   keys.addOutputComponent("weight",       "REWEIGHT",     "weights of the weighted average");
      85         372 :   keys.addOutputComponent("biasDer",      "REWEIGHT",     "derivatives with respect to the bias");
      86         372 :   keys.addOutputComponent("scale",        "SCALEDATA",    "scale parameter");
      87         372 :   keys.addOutputComponent("offset",       "ADDOFFSET",    "offset parameter");
      88         372 :   keys.addOutputComponent("ftilde",       "GENERIC",      "ensemble average estimator");
      89          93 : }
      90             : 
      91          86 : MetainferenceBase::MetainferenceBase(const ActionOptions&ao):
      92             :   Action(ao),
      93             :   ActionAtomistic(ao),
      94             :   ActionWithArguments(ao),
      95             :   ActionWithValue(ao),
      96             :   doscore_(false),
      97             :   write_stride_(0),
      98             :   narg(0),
      99             :   doscale_(false),
     100             :   scale_(1.),
     101             :   scale_mu_(0),
     102             :   scale_min_(1),
     103             :   scale_max_(-1),
     104             :   Dscale_(-1),
     105             :   dooffset_(false),
     106             :   offset_(0.),
     107             :   offset_mu_(0),
     108             :   offset_min_(1),
     109             :   offset_max_(-1),
     110             :   Doffset_(-1),
     111             :   doregres_zero_(false),
     112             :   nregres_zero_(0),
     113             :   Dftilde_(0.1),
     114             :   random(3),
     115             :   MCsteps_(1),
     116             :   MCaccept_(0),
     117             :   MCacceptScale_(0),
     118             :   MCacceptFT_(0),
     119             :   MCtrial_(0),
     120             :   MCchunksize_(0),
     121             :   firstTime(true),
     122             :   do_reweight_(false),
     123             :   do_optsigmamean_(0),
     124             :   nsel_(1),
     125             :   iselect(0),
     126             :   optsigmamean_stride_(0),
     127         688 :   decay_w_(1.)
     128             : {
     129         172 :   parseFlag("DOSCORE", doscore_);
     130             : 
     131          86 :   bool noensemble = false;
     132         172 :   parseFlag("NOENSEMBLE", noensemble);
     133             : 
     134             :   // set up replica stuff
     135          86 :   master = (comm.Get_rank()==0);
     136          86 :   if(master) {
     137          55 :     nrep_    = multi_sim_comm.Get_size();
     138          55 :     replica_ = multi_sim_comm.Get_rank();
     139          55 :     if(noensemble) nrep_ = 1;
     140             :   } else {
     141          31 :     nrep_    = 0;
     142          31 :     replica_ = 0;
     143             :   }
     144          86 :   comm.Sum(&nrep_,1);
     145          86 :   comm.Sum(&replica_,1);
     146             : 
     147         172 :   parse("SELECTOR", selector_);
     148         172 :   parse("NSELECT", nsel_);
     149             :   // do checks
     150          86 :   if(selector_.length()>0 && nsel_<=1) error("With SELECTOR active, NSELECT must be greater than 1");
     151          86 :   if(selector_.length()==0 && nsel_>1) error("With NSELECT greater than 1, you must specify SELECTOR");
     152             : 
     153             :   // initialise firstTimeW
     154          86 :   firstTimeW.resize(nsel_, true);
     155             : 
     156             :   // reweight implies a different number of arguments (the latest one must always be the bias)
     157         172 :   parseFlag("REWEIGHT", do_reweight_);
     158         108 :   if(do_reweight_&&getNumberOfArguments()!=1) error("To REWEIGHT one must provide one single bias as an argument");
     159          86 :   if(do_reweight_&&nrep_<2) error("REWEIGHT can only be used in parallel with 2 or more replicas");
     160         258 :   if(!getRestart()) average_weights_.resize(nsel_, vector<double> (nrep_, 1./static_cast<double>(nrep_)));
     161           0 :   else average_weights_.resize(nsel_, vector<double> (nrep_, 0.));
     162             : 
     163          86 :   unsigned averaging=0;
     164         172 :   parse("AVERAGING", averaging);
     165          86 :   if(averaging>0) {
     166           0 :     decay_w_ = 1./static_cast<double> (averaging);
     167           0 :     optsigmamean_stride_ = averaging;
     168             :   }
     169             : 
     170             :   string stringa_noise;
     171         172 :   parse("NOISETYPE",stringa_noise);
     172          86 :   if(stringa_noise=="GAUSS")           noise_type_ = GAUSS;
     173          79 :   else if(stringa_noise=="MGAUSS")     noise_type_ = MGAUSS;
     174          10 :   else if(stringa_noise=="OUTLIERS")   noise_type_ = OUTLIERS;
     175           9 :   else if(stringa_noise=="MOUTLIERS")  noise_type_ = MOUTLIERS;
     176           1 :   else if(stringa_noise=="GENERIC")    noise_type_ = GENERIC;
     177           0 :   else error("Unknown noise type!");
     178             : 
     179          86 :   if(noise_type_== GENERIC) {
     180             :     string stringa_like;
     181           2 :     parse("LIKELIHOOD",stringa_like);
     182           1 :     if(stringa_like=="GAUSS") gen_likelihood_ = LIKE_GAUSS;
     183           0 :     else if(stringa_like=="LOGN") gen_likelihood_ = LIKE_LOGN;
     184           0 :     else error("Unknown likelihood type!");
     185             : 
     186           2 :     parse("DFTILDE",Dftilde_);
     187             :   }
     188             : 
     189         172 :   parse("WRITE_STRIDE",write_stride_);
     190         172 :   parse("STATUS_FILE",status_file_name_);
     191         172 :   if(status_file_name_=="") status_file_name_ = "MISTATUS"+getLabel();
     192           0 :   else                      status_file_name_ = status_file_name_+getLabel();
     193             : 
     194             :   string stringa_optsigma;
     195         172 :   parse("OPTSIGMAMEAN", stringa_optsigma);
     196          86 :   if(stringa_optsigma=="NONE")      do_optsigmamean_=0;
     197           4 :   else if(stringa_optsigma=="SEM")  do_optsigmamean_=1;
     198             : 
     199             :   vector<double> read_sigma_mean_;
     200         172 :   parseVector("SIGMA_MEAN0",read_sigma_mean_);
     201         223 :   if(!do_optsigmamean_ && read_sigma_mean_.size()==0 && !getRestart() && doscore_)
     202           0 :     error("If you don't use OPTSIGMAMEAN and you are not RESTARTING then you MUST SET SIGMA_MEAN0");
     203             : 
     204          86 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     205          78 :     if(read_sigma_mean_.size()>0) {
     206          23 :       sigma_mean2_.resize(read_sigma_mean_.size());
     207          69 :       for(unsigned i=0; i<read_sigma_mean_.size(); i++) sigma_mean2_[i]=read_sigma_mean_[i]*read_sigma_mean_[i];
     208             :     } else {
     209          55 :       sigma_mean2_.resize(1,0.000001);
     210             :     }
     211             :   } else {
     212           8 :     if(read_sigma_mean_.size()==1) {
     213           8 :       sigma_mean2_.resize(1, read_sigma_mean_[0]*read_sigma_mean_[0]);
     214           0 :     } else if(read_sigma_mean_.size()==0) {
     215           0 :       sigma_mean2_.resize(1, 0.000001);
     216             :     } else {
     217           0 :       error("If you want to use more than one SIGMA_MEAN0 you should use NOISETYPE=MGAUSS|MOUTLIERS");
     218             :     }
     219             :   }
     220             : 
     221         172 :   parseFlag("SCALEDATA", doscale_);
     222          86 :   if(doscale_) {
     223             :     string stringa_noise;
     224          24 :     parse("SCALE_PRIOR",stringa_noise);
     225          12 :     if(stringa_noise=="GAUSSIAN")  scale_prior_ = SC_GAUSS;
     226          12 :     else if(stringa_noise=="FLAT") scale_prior_ = SC_FLAT;
     227           0 :     else error("Unknown SCALE_PRIOR type!");
     228          24 :     parse("SCALE0",scale_);
     229          24 :     parse("DSCALE",Dscale_);
     230          12 :     if(Dscale_<0.) error("DSCALE must be set when using SCALEDATA");
     231          12 :     if(scale_prior_==SC_GAUSS) {
     232           0 :       scale_mu_=scale_;
     233             :     } else {
     234          24 :       parse("SCALE_MIN",scale_min_);
     235          24 :       parse("SCALE_MAX",scale_max_);
     236          12 :       if(scale_max_<scale_min_) error("SCALE_MAX and SCALE_MIN must be set when using SCALE_PRIOR=FLAT");
     237             :     }
     238             :   }
     239             : 
     240         172 :   parseFlag("ADDOFFSET", dooffset_);
     241          86 :   if(dooffset_) {
     242             :     string stringa_noise;
     243           4 :     parse("OFFSET_PRIOR",stringa_noise);
     244           2 :     if(stringa_noise=="GAUSSIAN")  offset_prior_ = SC_GAUSS;
     245           2 :     else if(stringa_noise=="FLAT") offset_prior_ = SC_FLAT;
     246           0 :     else error("Unknown OFFSET_PRIOR type!");
     247           4 :     parse("OFFSET0",offset_);
     248           4 :     parse("DOFFSET",Doffset_);
     249           2 :     if(offset_prior_==SC_GAUSS) {
     250           0 :       offset_mu_=offset_;
     251           0 :       if(Doffset_<0.) error("DOFFSET must be set when using OFFSET_PRIOR=GAUSS");
     252             :     } else {
     253           4 :       parse("OFFSET_MIN",offset_min_);
     254           4 :       parse("OFFSET_MAX",offset_max_);
     255           2 :       if(Doffset_<0) Doffset_ = 0.05*(offset_max_ - offset_min_);
     256           2 :       if(offset_max_<offset_min_) error("OFFSET_MAX and OFFSET_MIN must be set when using OFFSET_PRIOR=FLAT");
     257             :     }
     258             :   }
     259             : 
     260             :   // regression with zero intercept
     261         172 :   parse("REGRES_ZERO", nregres_zero_);
     262          86 :   if(nregres_zero_>0) {
     263             :     // set flag
     264           0 :     doregres_zero_=true;
     265             :     // check if already sampling scale and offset
     266           0 :     if(doscale_)  error("REGRES_ZERO and SCALEDATA are mutually exclusive");
     267           0 :     if(dooffset_) error("REGRES_ZERO and ADDOFFSET are mutually exclusive");
     268             :   }
     269             : 
     270             :   vector<double> readsigma;
     271         172 :   parseVector("SIGMA0",readsigma);
     272          94 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma.size()>1)
     273           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     274          86 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     275          78 :     sigma_.resize(readsigma.size());
     276          78 :     sigma_=readsigma;
     277           8 :   } else sigma_.resize(1, readsigma[0]);
     278             : 
     279             :   vector<double> readsigma_min;
     280         172 :   parseVector("SIGMA_MIN",readsigma_min);
     281          94 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma_min.size()>1)
     282           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     283          86 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     284          78 :     sigma_min_.resize(readsigma_min.size());
     285          78 :     sigma_min_=readsigma_min;
     286           8 :   } else sigma_min_.resize(1, readsigma_min[0]);
     287             : 
     288             :   vector<double> readsigma_max;
     289         172 :   parseVector("SIGMA_MAX",readsigma_max);
     290          94 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma_max.size()>1)
     291           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     292          86 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     293          78 :     sigma_max_.resize(readsigma_max.size());
     294          78 :     sigma_max_=readsigma_max;
     295           8 :   } else sigma_max_.resize(1, readsigma_max[0]);
     296             : 
     297          86 :   if(sigma_max_.size()!=sigma_min_.size()) error("The number of values for SIGMA_MIN and SIGMA_MAX must be the same");
     298             : 
     299             :   vector<double> read_dsigma;
     300         172 :   parseVector("DSIGMA",read_dsigma);
     301          94 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma_max.size()>1)
     302           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     303          86 :   if(read_dsigma.size()>0) {
     304          31 :     Dsigma_.resize(read_dsigma.size());
     305          31 :     Dsigma_=read_dsigma;
     306             :   } else {
     307          55 :     Dsigma_.resize(sigma_max_.size());
     308         220 :     for(unsigned i=0; i<sigma_max_.size(); i++) Dsigma_[i] = 0.05*(sigma_max_[i] - sigma_min_[i]);
     309             :   }
     310             : 
     311             :   // monte carlo stuff
     312         172 :   parse("MC_STEPS",MCsteps_);
     313         172 :   parse("MC_CHUNKSIZE", MCchunksize_);
     314             :   // get temperature
     315          86 :   double temp=0.0;
     316         172 :   parse("TEMP",temp);
     317         117 :   if(temp>0.0) kbt_=plumed.getAtoms().getKBoltzmann()*temp;
     318         110 :   else kbt_=plumed.getAtoms().getKbT();
     319          86 :   if(kbt_==0.0&&doscore_) error("Unless the MD engine passes the temperature to plumed, you must specify it using TEMP");
     320             : 
     321             :   // initialize random seed
     322             :   unsigned iseed;
     323          86 :   if(master) iseed = time(NULL)+replica_;
     324          31 :   else iseed = 0;
     325          86 :   comm.Sum(&iseed, 1);
     326         172 :   random[0].setSeed(-iseed);
     327             :   // Random chunk
     328          86 :   if(master) iseed = time(NULL)+replica_;
     329          31 :   else iseed = 0;
     330          86 :   comm.Sum(&iseed, 1);
     331         172 :   random[2].setSeed(-iseed);
     332          86 :   if(doscale_||dooffset_) {
     333             :     // in this case we want the same seed everywhere
     334          14 :     iseed = time(NULL);
     335          14 :     if(master&&nrep_>1) multi_sim_comm.Bcast(iseed,0);
     336          14 :     comm.Bcast(iseed,0);
     337          28 :     random[1].setSeed(-iseed);
     338             :   }
     339             : 
     340             :   // outfile stuff
     341          86 :   if(write_stride_>0&&doscore_) {
     342          31 :     sfile_.link(*this);
     343          31 :     sfile_.open(status_file_name_);
     344             :   }
     345             : 
     346          86 : }
     347             : 
     348         430 : MetainferenceBase::~MetainferenceBase()
     349             : {
     350          86 :   if(sfile_.isOpen()) sfile_.close();
     351          86 : }
     352             : 
     353          31 : void MetainferenceBase::Initialise(const unsigned input)
     354             : {
     355             :   setNarg(input);
     356          62 :   if(narg!=parameters.size()) {
     357           0 :     std::string num1; Tools::convert(parameters.size(),num1);
     358           0 :     std::string num2; Tools::convert(narg,num2);
     359           0 :     std::string msg = "The number of experimental values " + num1 +" must be the same of the calculated values " + num2;
     360           0 :     error(msg);
     361             :   }
     362             : 
     363             :   // resize vector for sigma_mean history
     364          31 :   sigma_mean2_last_.resize(nsel_);
     365          62 :   for(unsigned i=0; i<nsel_; i++) sigma_mean2_last_[i].resize(narg);
     366          31 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     367          23 :     if(sigma_mean2_.size()==1) {
     368          23 :       double tmp = sigma_mean2_[0];
     369          23 :       sigma_mean2_.resize(narg, tmp);
     370           0 :     } else if(sigma_mean2_.size()>1&&sigma_mean2_.size()!=narg) {
     371           0 :       error("SIGMA_MEAN0 can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     372             :     }
     373             :     // set the initial value for the history
     374        7410 :     for(unsigned i=0; i<nsel_; i++) for(unsigned j=0; j<narg; j++) sigma_mean2_last_[i][j].push_back(sigma_mean2_[j]);
     375             :   } else {
     376             :     // set the initial value for the history
     377          54 :     for(unsigned i=0; i<nsel_; i++) for(unsigned j=0; j<narg; j++) sigma_mean2_last_[i][j].push_back(sigma_mean2_[0]);
     378             :   }
     379             : 
     380             :   // set sigma_bias
     381          31 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     382          23 :     if(sigma_.size()==1) {
     383          23 :       double tmp = sigma_[0];
     384          23 :       sigma_.resize(narg, tmp);
     385           0 :     } else if(sigma_.size()>1&&sigma_.size()!=narg) {
     386           0 :       error("SIGMA0 can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     387             :     }
     388          23 :     if(sigma_min_.size()==1) {
     389          23 :       double tmp = sigma_min_[0];
     390          23 :       sigma_min_.resize(narg, tmp);
     391           0 :     } else if(sigma_min_.size()>1&&sigma_min_.size()!=narg) {
     392           0 :       error("SIGMA_MIN can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     393             :     }
     394          23 :     if(sigma_max_.size()==1) {
     395          23 :       double tmp = sigma_max_[0];
     396          23 :       sigma_max_.resize(narg, tmp);
     397           0 :     } else if(sigma_max_.size()>1&&sigma_max_.size()!=narg) {
     398           0 :       error("SIGMA_MAX can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     399             :     }
     400          23 :     if(Dsigma_.size()==1) {
     401          23 :       double tmp = Dsigma_[0];
     402          23 :       Dsigma_.resize(narg, tmp);
     403           0 :     } else if(Dsigma_.size()>1&&Dsigma_.size()!=narg) {
     404           0 :       error("DSIGMA can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     405             :     }
     406             :   }
     407             : 
     408          31 :   IFile restart_sfile;
     409          31 :   restart_sfile.link(*this);
     410          62 :   if(getRestart()&&restart_sfile.FileExist(status_file_name_)) {
     411           0 :     firstTime = false;
     412           0 :     for(unsigned i=0; i<nsel_; i++) firstTimeW[i] = false;
     413           0 :     restart_sfile.open(status_file_name_);
     414           0 :     log.printf("  Restarting from %s\n", status_file_name_.c_str());
     415             :     double dummy;
     416           0 :     if(restart_sfile.scanField("time",dummy)) {
     417             :       // nsel
     418           0 :       for(unsigned i=0; i<sigma_mean2_last_.size(); i++) {
     419             :         std::string msg_i;
     420           0 :         Tools::convert(i,msg_i);
     421             :         // narg
     422           0 :         if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     423           0 :           for(unsigned j=0; j<narg; ++j) {
     424             :             std::string msg_j;
     425           0 :             Tools::convert(j,msg_j);
     426           0 :             std::string msg = msg_i+"_"+msg_j;
     427             :             double read_sm;
     428           0 :             restart_sfile.scanField("sigmaMean_"+msg,read_sm);
     429           0 :             sigma_mean2_last_[i][j][0] = read_sm*read_sm;
     430             :           }
     431             :         }
     432           0 :         if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
     433             :           double read_sm;
     434             :           std::string msg_j;
     435           0 :           Tools::convert(0,msg_j);
     436           0 :           std::string msg = msg_i+"_"+msg_j;
     437           0 :           restart_sfile.scanField("sigmaMean_"+msg,read_sm);
     438           0 :           for(unsigned j=0; j<narg; j++) sigma_mean2_last_[i][j][0] = read_sm*read_sm;
     439             :         }
     440             :       }
     441             : 
     442           0 :       for(unsigned i=0; i<sigma_.size(); ++i) {
     443             :         std::string msg;
     444           0 :         Tools::convert(i,msg);
     445           0 :         restart_sfile.scanField("sigma_"+msg,sigma_[i]);
     446             :       }
     447           0 :       if(noise_type_==GENERIC) {
     448           0 :         for(unsigned i=0; i<ftilde_.size(); ++i) {
     449             :           std::string msg;
     450           0 :           Tools::convert(i,msg);
     451           0 :           restart_sfile.scanField("ftilde_"+msg,ftilde_[i]);
     452             :         }
     453             :       }
     454           0 :       restart_sfile.scanField("scale0_",scale_);
     455           0 :       restart_sfile.scanField("offset0_",offset_);
     456             : 
     457           0 :       for(unsigned i=0; i<nsel_; i++) {
     458             :         std::string msg;
     459           0 :         Tools::convert(i,msg);
     460             :         double tmp_w;
     461           0 :         restart_sfile.scanField("weight_"+msg,tmp_w);
     462           0 :         if(master) {
     463           0 :           average_weights_[i][replica_] = tmp_w;
     464           0 :           if(nrep_>1) multi_sim_comm.Sum(&average_weights_[i][0], nrep_);
     465             :         }
     466           0 :         comm.Sum(&average_weights_[i][0], nrep_);
     467             :       }
     468             : 
     469             :     }
     470           0 :     restart_sfile.scanField();
     471           0 :     restart_sfile.close();
     472             :   }
     473             : 
     474          62 :   addComponentWithDerivatives("score");
     475          62 :   componentIsNotPeriodic("score");
     476          62 :   valueScore=getPntrToComponent("score");
     477             : 
     478          31 :   if(do_reweight_) {
     479          44 :     addComponent("biasDer");
     480          44 :     componentIsNotPeriodic("biasDer");
     481          44 :     addComponent("weight");
     482          44 :     componentIsNotPeriodic("weight");
     483             :   }
     484             : 
     485          31 :   if(doscale_ || doregres_zero_) {
     486          24 :     addComponent("scale");
     487          24 :     componentIsNotPeriodic("scale");
     488          24 :     valueScale=getPntrToComponent("scale");
     489             :   }
     490             : 
     491          31 :   if(dooffset_) {
     492           4 :     addComponent("offset");
     493           4 :     componentIsNotPeriodic("offset");
     494           4 :     valueOffset=getPntrToComponent("offset");
     495             :   }
     496             : 
     497          31 :   if(dooffset_||doscale_) {
     498          28 :     addComponent("acceptScale");
     499          28 :     componentIsNotPeriodic("acceptScale");
     500          28 :     valueAcceptScale=getPntrToComponent("acceptScale");
     501             :   }
     502             : 
     503          31 :   if(noise_type_==GENERIC) {
     504           2 :     addComponent("acceptFT");
     505           2 :     componentIsNotPeriodic("acceptFT");
     506           2 :     valueAcceptFT=getPntrToComponent("acceptFT");
     507             :   }
     508             : 
     509          62 :   addComponent("acceptSigma");
     510          62 :   componentIsNotPeriodic("acceptSigma");
     511          62 :   valueAccept=getPntrToComponent("acceptSigma");
     512             : 
     513          31 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     514        4963 :     for(unsigned i=0; i<sigma_mean2_.size(); ++i) {
     515        2470 :       std::string num; Tools::convert(i,num);
     516        7410 :       addComponent("sigmaMean-"+num); componentIsNotPeriodic("sigmaMean-"+num);
     517        7410 :       valueSigmaMean.push_back(getPntrToComponent("sigmaMean-"+num));
     518        4940 :       getPntrToComponent("sigmaMean-"+num)->set(sqrt(sigma_mean2_[i]));
     519        7410 :       addComponent("sigma-"+num); componentIsNotPeriodic("sigma-"+num);
     520        7410 :       valueSigma.push_back(getPntrToComponent("sigma-"+num));
     521        4940 :       getPntrToComponent("sigma-"+num)->set(sigma_[i]);
     522        2470 :       if(noise_type_==GENERIC) {
     523           6 :         addComponent("ftilde-"+num); componentIsNotPeriodic("ftilde-"+num);
     524           6 :         valueFtilde.push_back(getPntrToComponent("ftilde-"+num));
     525             :       }
     526             :     }
     527             :   } else {
     528          24 :     addComponent("sigmaMean"); componentIsNotPeriodic("sigmaMean");
     529          24 :     valueSigmaMean.push_back(getPntrToComponent("sigmaMean"));
     530          16 :     getPntrToComponent("sigmaMean")->set(sqrt(sigma_mean2_[0]));
     531          24 :     addComponent("sigma"); componentIsNotPeriodic("sigma");
     532          24 :     valueSigma.push_back(getPntrToComponent("sigma"));
     533          16 :     getPntrToComponent("sigma")->set(sigma_[0]);
     534             :   }
     535             : 
     536          31 :   switch(noise_type_) {
     537             :   case GENERIC:
     538           1 :     log.printf("  with general metainference ");
     539           1 :     if(gen_likelihood_==LIKE_GAUSS) log.printf(" and a gaussian likelihood\n");
     540           0 :     else if(gen_likelihood_==LIKE_LOGN) log.printf(" and a log-normal likelihood\n");
     541           1 :     log.printf("  ensemble average parameter sampled with a step %lf of sigma_mean\n", Dftilde_);
     542             :     break;
     543             :   case GAUSS:
     544           7 :     log.printf("  with gaussian noise and a single noise parameter for all the data\n");
     545             :     break;
     546             :   case MGAUSS:
     547          14 :     log.printf("  with gaussian noise and a noise parameter for each data point\n");
     548             :     break;
     549             :   case OUTLIERS:
     550           1 :     log.printf("  with long tailed gaussian noise and a single noise parameter for all the data\n");
     551             :     break;
     552             :   case MOUTLIERS:
     553           8 :     log.printf("  with long tailed gaussian noise and a noise parameter for each data point\n");
     554             :     break;
     555             :   }
     556             : 
     557          31 :   if(doscale_) {
     558          12 :     log.printf("  sampling a common scaling factor with:\n");
     559          12 :     log.printf("    initial scale parameter %f\n",scale_);
     560          12 :     if(scale_prior_==SC_GAUSS) {
     561           0 :       log.printf("    gaussian prior with mean %f and width %f\n",scale_mu_,Dscale_);
     562             :     }
     563          12 :     if(scale_prior_==SC_FLAT) {
     564          12 :       log.printf("    flat prior between %f - %f\n",scale_min_,scale_max_);
     565          12 :       log.printf("    maximum MC move of scale parameter %f\n",Dscale_);
     566             :     }
     567             :   }
     568             : 
     569          31 :   if(dooffset_) {
     570           2 :     log.printf("  sampling a common offset with:\n");
     571           2 :     log.printf("    initial offset parameter %f\n",offset_);
     572           2 :     if(offset_prior_==SC_GAUSS) {
     573           0 :       log.printf("    gaussian prior with mean %f and width %f\n",offset_mu_,Doffset_);
     574             :     }
     575           2 :     if(offset_prior_==SC_FLAT) {
     576           2 :       log.printf("    flat prior between %f - %f\n",offset_min_,offset_max_);
     577           2 :       log.printf("    maximum MC move of offset parameter %f\n",Doffset_);
     578             :     }
     579             :   }
     580             : 
     581          31 :   log.printf("  number of experimental data points %u\n",narg);
     582          31 :   log.printf("  number of replicas %u\n",nrep_);
     583          31 :   log.printf("  initial data uncertainties");
     584        4987 :   for(unsigned i=0; i<sigma_.size(); ++i) log.printf(" %f", sigma_[i]);
     585          31 :   log.printf("\n");
     586          31 :   log.printf("  minimum data uncertainties");
     587        4987 :   for(unsigned i=0; i<sigma_.size(); ++i) log.printf(" %f",sigma_min_[i]);
     588          31 :   log.printf("\n");
     589          31 :   log.printf("  maximum data uncertainties");
     590        4987 :   for(unsigned i=0; i<sigma_.size(); ++i) log.printf(" %f",sigma_max_[i]);
     591          31 :   log.printf("\n");
     592          31 :   log.printf("  maximum MC move of data uncertainties");
     593        4987 :   for(unsigned i=0; i<sigma_.size(); ++i) log.printf(" %f",Dsigma_[i]);
     594          31 :   log.printf("\n");
     595          31 :   log.printf("  temperature of the system %f\n",kbt_);
     596          31 :   log.printf("  MC steps %u\n",MCsteps_);
     597          31 :   log.printf("  initial standard errors of the mean");
     598        4987 :   for(unsigned i=0; i<sigma_mean2_.size(); ++i) log.printf(" %f", sqrt(sigma_mean2_[i]));
     599          31 :   log.printf("\n");
     600             : 
     601             :   //resize the number of metainference derivatives and the number of back-calculated data
     602          31 :   metader_.resize(narg, 0.);
     603          31 :   calc_data_.resize(narg, 0.);
     604             : 
     605          93 :   log<<"  Bibliography "<<plumed.cite("Bonomi, Camilloni, Cavalli, Vendruscolo, Sci. Adv. 2, e150117 (2016)");
     606          75 :   if(do_reweight_) log<<plumed.cite("Bonomi, Camilloni, Vendruscolo, Sci. Rep. 6, 31232 (2016)");
     607          39 :   if(do_optsigmamean_>0) log<<plumed.cite("Loehr, Jussupow, Camilloni, J. Chem. Phys. 146, 165102 (2017)");
     608          93 :   log<<plumed.cite("Bonomi, Camilloni, Bioinformatics, 33, 3999 (2017)");
     609          31 :   log<<"\n";
     610          31 : }
     611             : 
     612           0 : void MetainferenceBase::Selector()
     613             : {
     614           0 :   iselect = 0;
     615             :   // set the value of selector for  REM-like stuff
     616           0 :   if(selector_.length()>0) iselect = static_cast<unsigned>(plumed.passMap[selector_]);
     617           0 : }
     618             : 
     619          12 : double MetainferenceBase::getEnergySP(const vector<double> &mean, const vector<double> &sigma,
     620             :                                       const double scale, const double offset)
     621             : {
     622          12 :   const double scale2 = scale*scale;
     623          12 :   const double sm2    = sigma_mean2_[0];
     624          12 :   const double ss2    = sigma[0]*sigma[0] + scale2*sm2;
     625          12 :   const double sss    = sigma[0]*sigma[0] + sm2;
     626             : 
     627             :   double ene = 0.0;
     628          36 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
     629             :   {
     630          24 :     #pragma omp for reduction( + : ene)
     631             :     for(unsigned i=0; i<narg; ++i) {
     632         249 :       const double dev = scale*mean[i]-parameters[i]+offset;
     633          83 :       const double a2 = 0.5*dev*dev + ss2;
     634          83 :       ene += std::log(2.0*a2/(1.0-exp(-a2/sm2)));
     635             :     }
     636             :   }
     637             :   // add one single Jeffrey's prior and one normalisation per data point
     638          12 :   ene += 0.5*std::log(sss) + static_cast<double>(narg)*0.5*std::log(0.5*M_PI*M_PI/ss2);
     639          12 :   if(doscale_ || doregres_zero_) ene += 0.5*std::log(sss);
     640          12 :   if(dooffset_) ene += 0.5*std::log(sss);
     641          12 :   return kbt_ * ene;
     642             : }
     643             : 
     644        5328 : double MetainferenceBase::getEnergySPE(const vector<double> &mean, const vector<double> &sigma,
     645             :                                        const double scale, const double offset)
     646             : {
     647        5328 :   const double scale2 = scale*scale;
     648             :   double ene = 0.0;
     649       15984 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
     650             :   {
     651       10656 :     #pragma omp for reduction( + : ene)
     652             :     for(unsigned i=0; i<narg; ++i) {
     653       42588 :       const double sm2 = sigma_mean2_[i];
     654       21294 :       const double ss2 = sigma[i]*sigma[i] + scale2*sm2;
     655       21294 :       const double sss = sigma[i]*sigma[i] + sm2;
     656       42588 :       const double dev = scale*mean[i]-parameters[i]+offset;
     657       21294 :       const double a2  = 0.5*dev*dev + ss2;
     658       21294 :       ene += 0.5*std::log(sss) + 0.5*std::log(0.5*M_PI*M_PI/ss2) + std::log(2.0*a2/(1.0-exp(-a2/sm2)));
     659       42588 :       if(doscale_ || doregres_zero_)  ene += 0.5*std::log(sss);
     660       21294 :       if(dooffset_) ene += 0.5*std::log(sss);
     661             :     }
     662             :   }
     663        5328 :   return kbt_ * ene;
     664             : }
     665             : 
     666          48 : double MetainferenceBase::getEnergyMIGEN(const vector<double> &mean, const vector<double> &ftilde, const vector<double> &sigma,
     667             :     const double scale, const double offset)
     668             : {
     669             :   double ene = 0.0;
     670         144 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
     671             :   {
     672          96 :     #pragma omp for reduction( + : ene)
     673             :     for(unsigned i=0; i<narg; ++i) {
     674         192 :       const double inv_sb2  = 1./(sigma[i]*sigma[i]);
     675          96 :       const double inv_sm2  = 1./sigma_mean2_[i];
     676             :       double devb = 0;
     677         286 :       if(gen_likelihood_==LIKE_GAUSS)     devb = scale*ftilde[i]-parameters[i]+offset;
     678           1 :       else if(gen_likelihood_==LIKE_LOGN) devb = std::log(scale*ftilde[i]/parameters[i]);
     679         192 :       double devm = mean[i] - ftilde[i];
     680             :       // deviation + normalisation + jeffrey
     681             :       double normb = 0.;
     682         192 :       if(gen_likelihood_==LIKE_GAUSS)     normb = -0.5*std::log(0.5/M_PI*inv_sb2);
     683           0 :       else if(gen_likelihood_==LIKE_LOGN) normb = -0.5*std::log(0.5/M_PI*inv_sb2/(parameters[i]*parameters[i]));
     684          96 :       const double normm         = -0.5*std::log(0.5/M_PI*inv_sm2);
     685          96 :       const double jeffreys      = -0.5*std::log(2.*inv_sb2);
     686          96 :       ene += 0.5*devb*devb*inv_sb2 + 0.5*devm*devm*inv_sm2 + normb + normm + jeffreys;
     687          96 :       if(doscale_ || doregres_zero_)  ene += jeffreys;
     688          96 :       if(dooffset_) ene += jeffreys;
     689             :     }
     690             :   }
     691          48 :   return kbt_ * ene;
     692             : }
     693             : 
     694         554 : double MetainferenceBase::getEnergyGJ(const vector<double> &mean, const vector<double> &sigma,
     695             :                                       const double scale, const double offset)
     696             : {
     697         554 :   const double scale2  = scale*scale;
     698        1108 :   const double inv_s2  = 1./(sigma[0]*sigma[0] + scale2*sigma_mean2_[0]);
     699         554 :   const double inv_sss = 1./(sigma[0]*sigma[0] + sigma_mean2_[0]);
     700             : 
     701             :   double ene = 0.0;
     702        1662 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
     703             :   {
     704        1108 :     #pragma omp for reduction( + : ene)
     705             :     for(unsigned i=0; i<narg; ++i) {
     706        4872 :       double dev = scale*mean[i]-parameters[i]+offset;
     707        1624 :       ene += 0.5*dev*dev*inv_s2;
     708             :     }
     709             :   }
     710         554 :   const double normalisation = -0.5*std::log(0.5/M_PI*inv_s2);
     711         554 :   const double jeffreys = -0.5*std::log(2.*inv_sss);
     712             :   // add Jeffrey's prior in case one sigma for all data points + one normalisation per datapoint
     713         554 :   ene += jeffreys + static_cast<double>(narg)*normalisation;
     714         554 :   if(doscale_ || doregres_zero_)  ene += jeffreys;
     715         554 :   if(dooffset_) ene += jeffreys;
     716             : 
     717         554 :   return kbt_ * ene;
     718             : }
     719             : 
     720         368 : double MetainferenceBase::getEnergyGJE(const vector<double> &mean, const vector<double> &sigma,
     721             :                                        const double scale, const double offset)
     722             : {
     723         368 :   const double scale2 = scale*scale;
     724             : 
     725             :   double ene = 0.0;
     726        1104 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
     727             :   {
     728         736 :     #pragma omp for reduction( + : ene)
     729             :     for(unsigned i=0; i<narg; ++i) {
     730       23691 :       const double inv_s2  = 1./(sigma[i]*sigma[i] + scale2*sigma_mean2_[i]);
     731        7897 :       const double inv_sss = 1./(sigma[i]*sigma[i] + sigma_mean2_[i]);
     732       15794 :       double dev = scale*mean[i]-parameters[i]+offset;
     733             :       // deviation + normalisation + jeffrey
     734        7897 :       const double normalisation = -0.5*std::log(0.5/M_PI*inv_s2);
     735        7897 :       const double jeffreys      = -0.5*std::log(2.*inv_sss);
     736        7897 :       ene += 0.5*dev*dev*inv_s2 + normalisation + jeffreys;
     737        8467 :       if(doscale_ || doregres_zero_)  ene += jeffreys;
     738        7897 :       if(dooffset_) ene += jeffreys;
     739             :     }
     740             :   }
     741         368 :   return kbt_ * ene;
     742             : }
     743             : 
     744        2225 : double MetainferenceBase::doMonteCarlo(const vector<double> &mean_)
     745             : {
     746             :   // calculate old energy with the updated coordinates
     747        2225 :   double old_energy=0.;
     748             : 
     749        2225 :   switch(noise_type_) {
     750             :   case GAUSS:
     751         271 :     old_energy = getEnergyGJ(mean_,sigma_,scale_,offset_);
     752         271 :     break;
     753             :   case MGAUSS:
     754         160 :     old_energy = getEnergyGJE(mean_,sigma_,scale_,offset_);
     755         160 :     break;
     756             :   case OUTLIERS:
     757           6 :     old_energy = getEnergySP(mean_,sigma_,scale_,offset_);
     758           6 :     break;
     759             :   case MOUTLIERS:
     760        1776 :     old_energy = getEnergySPE(mean_,sigma_,scale_,offset_);
     761        1776 :     break;
     762             :   case GENERIC:
     763          12 :     old_energy = getEnergyMIGEN(mean_,ftilde_,sigma_,scale_,offset_);
     764          12 :     break;
     765             :   }
     766             : 
     767        2225 :   if(!getExchangeStep()) {
     768             :     // Create vector of random sigma indices
     769             :     vector<unsigned> indices;
     770        2225 :     if (MCchunksize_ > 0) {
     771           0 :       for (unsigned j=0; j<sigma_.size(); j++) {
     772           0 :         indices.push_back(j);
     773             :       }
     774           0 :       random[2].Shuffle(indices);
     775             :     }
     776             :     bool breaknow = false;
     777             : 
     778             :     // cycle on MC steps
     779        6675 :     for(unsigned i=0; i<MCsteps_; ++i) {
     780             : 
     781        2225 :       MCtrial_++;
     782             : 
     783             :       // propose move for ftilde
     784        2225 :       vector<double> new_ftilde(sigma_.size());
     785        2225 :       new_ftilde = ftilde_;
     786             : 
     787        2225 :       if(noise_type_==GENERIC) {
     788             :         // change all sigmas
     789          60 :         for(unsigned j=0; j<sigma_.size(); j++) {
     790          24 :           const double r3 = random[0].Gaussian();
     791          48 :           const double ds3 = Dftilde_*sqrt(sigma_mean2_[j])*r3;
     792          24 :           new_ftilde[j] = ftilde_[j] + ds3;
     793             :         }
     794             :         // calculate new energy
     795          12 :         double new_energy = getEnergyMIGEN(mean_,new_ftilde,sigma_,scale_,offset_);
     796             : 
     797             :         // accept or reject
     798          12 :         const double delta = ( new_energy - old_energy ) / kbt_;
     799             :         // if delta is negative always accept move
     800          12 :         if( delta <= 0.0 ) {
     801          12 :           old_energy = new_energy;
     802          12 :           ftilde_ = new_ftilde;
     803          12 :           MCacceptFT_++;
     804             :           // otherwise extract random number
     805             :         } else {
     806           0 :           const double s = random[0].RandU01();
     807           0 :           if( s < exp(-delta) ) {
     808           0 :             old_energy = new_energy;
     809           0 :             ftilde_ = new_ftilde;
     810           0 :             MCacceptFT_++;
     811             :           }
     812             :         }
     813             :       }
     814             : 
     815             :       // propose move for scale and/or offset
     816        2225 :       double new_scale = scale_;
     817        2225 :       double new_offset = offset_;
     818        2225 :       if(doscale_||dooffset_) {
     819        1848 :         if(doscale_) {
     820        1824 :           if(scale_prior_==SC_FLAT) {
     821        1824 :             const double r1 = random[1].Gaussian();
     822        1824 :             const double ds1 = Dscale_*r1;
     823        1824 :             new_scale += ds1;
     824             :             // check boundaries
     825        1824 :             if(new_scale > scale_max_) {new_scale = 2.0 * scale_max_ - new_scale;}
     826        1824 :             if(new_scale < scale_min_) {new_scale = 2.0 * scale_min_ - new_scale;}
     827             :           } else {
     828           0 :             const double r1 = random[1].Gaussian();
     829           0 :             const double ds1 = 0.5*(scale_mu_-new_scale)+Dscale_*exp(1)/M_PI*r1;
     830           0 :             new_scale += ds1;
     831             :           }
     832             :         }
     833             : 
     834        1848 :         if(dooffset_) {
     835          24 :           if(offset_prior_==SC_FLAT) {
     836          24 :             const double r1 = random[1].Gaussian();
     837          24 :             const double ds1 = Doffset_*r1;
     838          24 :             new_offset += ds1;
     839             :             // check boundaries
     840          24 :             if(new_offset > offset_max_) {new_offset = 2.0 * offset_max_ - new_offset;}
     841          24 :             if(new_offset < offset_min_) {new_offset = 2.0 * offset_min_ - new_offset;}
     842             :           } else {
     843           0 :             const double r1 = random[1].Gaussian();
     844           0 :             const double ds1 = 0.5*(offset_mu_-new_offset)+Doffset_*exp(1)/M_PI*r1;
     845           0 :             new_offset += ds1;
     846             :           }
     847             :         }
     848             : 
     849             :         // calculate new energy
     850             :         double new_energy = 0.;
     851             : 
     852        1848 :         switch(noise_type_) {
     853             :         case GAUSS:
     854          12 :           new_energy = getEnergyGJ(mean_,sigma_,new_scale,new_offset);
     855             :           break;
     856             :         case MGAUSS:
     857          48 :           new_energy = getEnergyGJE(mean_,sigma_,new_scale,new_offset);
     858             :           break;
     859             :         case OUTLIERS:
     860           0 :           new_energy = getEnergySP(mean_,sigma_,new_scale,new_offset);
     861             :           break;
     862             :         case MOUTLIERS:
     863        1776 :           new_energy = getEnergySPE(mean_,sigma_,new_scale,new_offset);
     864             :           break;
     865             :         case GENERIC:
     866          12 :           new_energy = getEnergyMIGEN(mean_,ftilde_,sigma_,new_scale,new_offset);
     867             :           break;
     868             :         }
     869             :         // for the scale we need to consider the total energy
     870        1848 :         vector<double> totenergies(2);
     871        1848 :         if(master) {
     872         936 :           totenergies[0] = old_energy;
     873         936 :           totenergies[1] = new_energy;
     874         936 :           if(nrep_>1) multi_sim_comm.Sum(totenergies);
     875             :         } else {
     876         912 :           totenergies[0] = 0;
     877         912 :           totenergies[1] = 0;
     878             :         }
     879        1848 :         comm.Sum(totenergies);
     880             : 
     881             :         // accept or reject
     882        1848 :         const double delta = ( totenergies[1] - totenergies[0] ) / kbt_;
     883             :         // if delta is negative always accept move
     884        1848 :         if( delta <= 0.0 ) {
     885        1848 :           old_energy = new_energy;
     886        1848 :           scale_ = new_scale;
     887        1848 :           offset_ = new_offset;
     888        1848 :           MCacceptScale_++;
     889             :           // otherwise extract random number
     890             :         } else {
     891           0 :           double s = random[1].RandU01();
     892           0 :           if( s < exp(-delta) ) {
     893           0 :             old_energy = new_energy;
     894           0 :             scale_ = new_scale;
     895           0 :             offset_ = new_offset;
     896           0 :             MCacceptScale_++;
     897             :           }
     898             :         }
     899             :       }
     900             : 
     901             :       // propose move for sigma
     902        2225 :       vector<double> new_sigma(sigma_.size());
     903        2225 :       new_sigma = sigma_;
     904             : 
     905             :       // change MCchunksize_ sigmas
     906        2225 :       if (MCchunksize_ > 0) {
     907           0 :         if ((MCchunksize_ * i) >= sigma_.size()) {
     908             :           // This means we are not moving any sigma, so we should break immediately
     909             :           breaknow = true;
     910             :         }
     911             : 
     912             :         // change random sigmas
     913           0 :         for(unsigned j=0; j<MCchunksize_; j++) {
     914           0 :           const unsigned shuffle_index = j + MCchunksize_ * i;
     915           0 :           if (shuffle_index >= sigma_.size()) {
     916             :             // Going any further will segfault but we should still evaluate the sigmas we changed
     917             :             break;
     918             :           }
     919           0 :           const unsigned index = indices[shuffle_index];
     920           0 :           const double r2 = random[0].Gaussian();
     921           0 :           const double ds2 = Dsigma_[index]*r2;
     922           0 :           new_sigma[index] = sigma_[index] + ds2;
     923             :           // check boundaries
     924           0 :           if(new_sigma[index] > sigma_max_[index]) {new_sigma[index] = 2.0 * sigma_max_[index] - new_sigma[index];}
     925           0 :           if(new_sigma[index] < sigma_min_[index]) {new_sigma[index] = 2.0 * sigma_min_[index] - new_sigma[index];}
     926             :         }
     927             :       } else {
     928             :         // change all sigmas
     929       24747 :         for(unsigned j=0; j<sigma_.size(); j++) {
     930       11261 :           const double r2 = random[0].Gaussian();
     931       11261 :           const double ds2 = Dsigma_[j]*r2;
     932       11261 :           new_sigma[j] = sigma_[j] + ds2;
     933             :           // check boundaries
     934       22522 :           if(new_sigma[j] > sigma_max_[j]) {new_sigma[j] = 2.0 * sigma_max_[j] - new_sigma[j];}
     935       22522 :           if(new_sigma[j] < sigma_min_[j]) {new_sigma[j] = 2.0 * sigma_min_[j] - new_sigma[j];}
     936             :         }
     937             :       }
     938             : 
     939        2225 :       if (breaknow) {
     940             :         // We didnt move any sigmas, so no sense in evaluating anything
     941             :         break;
     942             :       }
     943             : 
     944             :       // calculate new energy
     945             :       double new_energy = 0.;
     946        2225 :       switch(noise_type_) {
     947             :       case GAUSS:
     948         271 :         new_energy = getEnergyGJ(mean_,new_sigma,scale_,offset_);
     949             :         break;
     950             :       case MGAUSS:
     951         160 :         new_energy = getEnergyGJE(mean_,new_sigma,scale_,offset_);
     952             :         break;
     953             :       case OUTLIERS:
     954           6 :         new_energy = getEnergySP(mean_,new_sigma,scale_,offset_);
     955             :         break;
     956             :       case MOUTLIERS:
     957        1776 :         new_energy = getEnergySPE(mean_,new_sigma,scale_,offset_);
     958             :         break;
     959             :       case GENERIC:
     960          12 :         new_energy = getEnergyMIGEN(mean_,ftilde_,new_sigma,scale_,offset_);
     961             :         break;
     962             :       }
     963             : 
     964             :       // accept or reject
     965        2225 :       const double delta = ( new_energy - old_energy ) / kbt_;
     966             :       // if delta is negative always accept move
     967        2225 :       if( delta <= 0.0 ) {
     968        2225 :         old_energy = new_energy;
     969        2225 :         sigma_ = new_sigma;
     970        2225 :         MCaccept_++;
     971             :         // otherwise extract random number
     972             :       } else {
     973           0 :         const double s = random[0].RandU01();
     974           0 :         if( s < exp(-delta) ) {
     975           0 :           old_energy = new_energy;
     976           0 :           sigma_ = new_sigma;
     977           0 :           MCaccept_++;
     978             :         }
     979             :       }
     980             : 
     981             :     }
     982             : 
     983             :     /* save the result of the sampling */
     984        2225 :     double accept = static_cast<double>(MCaccept_) / static_cast<double>(MCtrial_);
     985        2225 :     valueAccept->set(accept);
     986        2225 :     if(doscale_ || doregres_zero_) valueScale->set(scale_);
     987        2225 :     if(dooffset_) valueOffset->set(offset_);
     988        2225 :     if(doscale_||dooffset_) {
     989        1848 :       accept = static_cast<double>(MCacceptScale_) / static_cast<double>(MCtrial_);
     990        1848 :       valueAcceptScale->set(accept);
     991             :     }
     992       47269 :     for(unsigned i=0; i<sigma_.size(); i++) valueSigma[i]->set(sigma_[i]);
     993        2225 :     if(noise_type_==GENERIC) {
     994          12 :       accept = static_cast<double>(MCacceptFT_) / static_cast<double>(MCtrial_);
     995          12 :       valueAcceptFT->set(accept);
     996         108 :       for(unsigned i=0; i<sigma_.size(); i++) valueFtilde[i]->set(ftilde_[i]);
     997             :     }
     998             :   }
     999             : 
    1000             :   // here we sum the score over the replicas to get the full metainference score that we save as a bias
    1001        2225 :   if(master) {
    1002        1227 :     if(nrep_>1) multi_sim_comm.Sum(old_energy);
    1003             :   } else {
    1004         998 :     old_energy=0;
    1005             :   }
    1006        2225 :   comm.Sum(old_energy);
    1007             : 
    1008        2225 :   return old_energy;
    1009             : }
    1010             : 
    1011             : /*
    1012             :    In the following energy-force functions we don't add the normalisation and the jeffreys priors
    1013             :    because they are not needed for the forces, the correct MetaInference energy is the one calculated
    1014             :    in the Monte-Carlo
    1015             : */
    1016             : 
    1017           6 : void MetainferenceBase::getEnergyForceSP(const vector<double> &mean, const vector<double> &dmean_x,
    1018             :     const vector<double> &dmean_b)
    1019             : {
    1020           6 :   const double scale2 = scale_*scale_;
    1021           6 :   const double sm2    = sigma_mean2_[0];
    1022           6 :   const double ss2    = sigma_[0]*sigma_[0] + scale2*sm2;
    1023           6 :   vector<double> f(narg,0);
    1024             : 
    1025           6 :   if(master) {
    1026          17 :     #pragma omp parallel num_threads(OpenMP::getNumThreads())
    1027             :     {
    1028          11 :       #pragma omp for
    1029             :       for(unsigned i=0; i<narg; ++i) {
    1030         123 :         const double dev = scale_*mean[i]-parameters[i]+offset_;
    1031          41 :         const double a2 = 0.5*dev*dev + ss2;
    1032          41 :         const double t = exp(-a2/sm2);
    1033          41 :         const double dt = 1./t;
    1034          41 :         const double dit = 1./(1.-dt);
    1035          82 :         f[i] = -scale_*dev*(dit/sm2 + 1./a2);
    1036             :       }
    1037             :     }
    1038             :     // collect contribution to forces and energy from other replicas
    1039           6 :     if(nrep_>1) multi_sim_comm.Sum(&f[0],narg);
    1040             :   }
    1041             :   // intra-replica summation
    1042          12 :   comm.Sum(&f[0],narg);
    1043             : 
    1044             :   double w_tmp = 0.;
    1045          42 :   for(unsigned i=0; i<narg; ++i) {
    1046         126 :     setMetaDer(i, -kbt_*f[i]*dmean_x[i]);
    1047         126 :     w_tmp += kbt_*f[i]*dmean_b[i];
    1048             :   }
    1049             : 
    1050           6 :   if(do_reweight_) {
    1051           0 :     setArgDerivatives(valueScore, -w_tmp);
    1052           0 :     getPntrToComponent("biasDer")->set(-w_tmp);
    1053             :   }
    1054           6 : }
    1055             : 
    1056        1776 : void MetainferenceBase::getEnergyForceSPE(const vector<double> &mean, const vector<double> &dmean_x,
    1057             :     const vector<double> &dmean_b)
    1058             : {
    1059        1776 :   const double scale2 = scale_*scale_;
    1060        1776 :   vector<double> f(narg,0);
    1061             : 
    1062        1776 :   if(master) {
    1063        2649 :     #pragma omp parallel num_threads(OpenMP::getNumThreads())
    1064             :     {
    1065        1761 :       #pragma omp for
    1066             :       for(unsigned i=0; i<narg; ++i) {
    1067        7062 :         const double sm2 = sigma_mean2_[i];
    1068        3531 :         const double ss2 = sigma_[i]*sigma_[i] + scale2*sm2;
    1069       10593 :         const double dev = scale_*mean[i]-parameters[i]+offset_;
    1070        3531 :         const double a2  = 0.5*dev*dev + ss2;
    1071        3531 :         const double t   = exp(-a2/sm2);
    1072        3531 :         const double dt  = 1./t;
    1073        3531 :         const double dit = 1./(1.-dt);
    1074        7062 :         f[i] = -scale_*dev*(dit/sm2 + 1./a2);
    1075             :       }
    1076             :     }
    1077             :     // collect contribution to forces and energy from other replicas
    1078        1776 :     if(nrep_>1) multi_sim_comm.Sum(&f[0],narg);
    1079             :   }
    1080        3552 :   comm.Sum(&f[0],narg);
    1081             : 
    1082             :   double w_tmp = 0.;
    1083        7104 :   for(unsigned i=0; i<narg; ++i) {
    1084       21312 :     setMetaDer(i, -kbt_ * dmean_x[i] * f[i]);
    1085       21312 :     w_tmp += kbt_ * dmean_b[i] *f[i];
    1086             :   }
    1087             : 
    1088        1776 :   if(do_reweight_) {
    1089        1776 :     setArgDerivatives(valueScore, -w_tmp);
    1090        3552 :     getPntrToComponent("biasDer")->set(-w_tmp);
    1091             :   }
    1092        1776 : }
    1093             : 
    1094         271 : void MetainferenceBase::getEnergyForceGJ(const vector<double> &mean, const vector<double> &dmean_x,
    1095             :     const vector<double> &dmean_b)
    1096             : {
    1097         271 :   const double scale2 = scale_*scale_;
    1098         271 :   double inv_s2=0.;
    1099             : 
    1100         271 :   if(master) {
    1101         458 :     inv_s2 = 1./(sigma_[0]*sigma_[0] + scale2*sigma_mean2_[0]);
    1102         229 :     if(nrep_>1) multi_sim_comm.Sum(inv_s2);
    1103             :   }
    1104         271 :   comm.Sum(inv_s2);
    1105             : 
    1106         271 :   double w_tmp = 0.;
    1107         813 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(w_tmp)
    1108             :   {
    1109         542 :     #pragma omp for reduction( + : w_tmp)
    1110             :     for(unsigned i=0; i<narg; ++i) {
    1111        2400 :       const double dev = scale_*mean[i]-parameters[i]+offset_;
    1112         800 :       const double mult = dev*scale_*inv_s2;
    1113        1600 :       setMetaDer(i, kbt_*dmean_x[i]*mult);
    1114        1600 :       w_tmp += kbt_*dmean_b[i]*mult;
    1115             :     }
    1116             :   }
    1117             : 
    1118         271 :   if(do_reweight_) {
    1119          84 :     setArgDerivatives(valueScore, w_tmp);
    1120         168 :     getPntrToComponent("biasDer")->set(w_tmp);
    1121             :   }
    1122         271 : }
    1123             : 
    1124         160 : void MetainferenceBase::getEnergyForceGJE(const vector<double> &mean, const vector<double> &dmean_x,
    1125             :     const vector<double> &dmean_b)
    1126             : {
    1127         160 :   const double scale2 = scale_*scale_;
    1128         320 :   vector<double> inv_s2(sigma_.size(),0.);
    1129             : 
    1130         160 :   if(master) {
    1131        5948 :     for(unsigned i=0; i<sigma_.size(); ++i) inv_s2[i] = 1./(sigma_[i]*sigma_[i] + scale2*sigma_mean2_[i]);
    1132         184 :     if(nrep_>1) multi_sim_comm.Sum(&inv_s2[0],sigma_.size());
    1133             :   }
    1134         320 :   comm.Sum(&inv_s2[0],sigma_.size());
    1135             : 
    1136         160 :   double w_tmp = 0.;
    1137         480 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(w_tmp)
    1138             :   {
    1139         320 :     #pragma omp for reduction( + : w_tmp)
    1140             :     for(unsigned i=0; i<narg; ++i) {
    1141       11568 :       const double dev  = scale_*mean[i]-parameters[i]+offset_;
    1142        7712 :       const double mult = dev*scale_*inv_s2[i];
    1143        7712 :       setMetaDer(i, kbt_*dmean_x[i]*mult);
    1144        7712 :       w_tmp += kbt_*dmean_b[i]*mult;
    1145             :     }
    1146             :   }
    1147             : 
    1148         160 :   if(do_reweight_) {
    1149          76 :     setArgDerivatives(valueScore, w_tmp);
    1150         152 :     getPntrToComponent("biasDer")->set(w_tmp);
    1151             :   }
    1152         160 : }
    1153             : 
    1154          12 : void MetainferenceBase::getEnergyForceMIGEN(const vector<double> &mean, const vector<double> &dmean_x, const vector<double> &dmean_b)
    1155             : {
    1156          24 :   vector<double> inv_s2(sigma_.size(),0.);
    1157          24 :   vector<double> dev(sigma_.size(),0.);
    1158          24 :   vector<double> dev2(sigma_.size(),0.);
    1159             : 
    1160          72 :   for(unsigned i=0; i<sigma_.size(); ++i) {
    1161          24 :     inv_s2[i]   = 1./sigma_mean2_[i];
    1162          24 :     if(master) {
    1163          48 :       dev[i]  = (mean[i]-ftilde_[i]);
    1164          24 :       dev2[i] = dev[i]*dev[i];
    1165             :     }
    1166             :   }
    1167          12 :   if(master&&nrep_>1) {
    1168           0 :     multi_sim_comm.Sum(&dev[0],dev.size());
    1169           0 :     multi_sim_comm.Sum(&dev2[0],dev2.size());
    1170             :   }
    1171          12 :   comm.Sum(&dev[0],dev.size());
    1172          12 :   comm.Sum(&dev2[0],dev2.size());
    1173             : 
    1174          12 :   double dene_b = 0.;
    1175          36 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(dene_b)
    1176             :   {
    1177          24 :     #pragma omp for reduction( + : dene_b)
    1178             :     for(unsigned i=0; i<narg; ++i) {
    1179          92 :       const double dene_x  = kbt_*inv_s2[i]*dmean_x[i]*dev[i];
    1180          23 :       dene_b += kbt_*inv_s2[i]*dmean_b[i]*dev[i];
    1181             :       setMetaDer(i, dene_x);
    1182             :     }
    1183             :   }
    1184             : 
    1185          12 :   if(do_reweight_) {
    1186           0 :     setArgDerivatives(valueScore, dene_b);
    1187           0 :     getPntrToComponent("biasDer")->set(dene_b);
    1188             :   }
    1189          12 : }
    1190             : 
    1191        2225 : void MetainferenceBase::get_weights(double &fact, double &var_fact)
    1192             : {
    1193        2225 :   const double dnrep    = static_cast<double>(nrep_);
    1194        2225 :   const double ave_fact = 1.0/dnrep;
    1195             : 
    1196             :   double norm = 0.0;
    1197             : 
    1198             :   // calculate the weights either from BIAS
    1199        2225 :   if(do_reweight_) {
    1200        1936 :     vector<double> bias(nrep_,0);
    1201        1936 :     if(master) {
    1202        1960 :       bias[replica_] = getArgument(0);
    1203        1960 :       if(nrep_>1) multi_sim_comm.Sum(&bias[0], nrep_);
    1204             :     }
    1205        3872 :     comm.Sum(&bias[0], nrep_);
    1206             : 
    1207        3872 :     const double maxbias = *(std::max_element(bias.begin(), bias.end()));
    1208        5808 :     for(unsigned i=0; i<nrep_; ++i) {
    1209        7744 :       bias[i] = exp((bias[i]-maxbias)/kbt_);
    1210        3872 :       norm   += bias[i];
    1211             :     }
    1212             : 
    1213             :     // accumulate weights
    1214        3872 :     if(!firstTimeW[iselect]) {
    1215        3828 :       for(unsigned i=0; i<nrep_; ++i) {
    1216       11484 :         const double delta=bias[i]/norm-average_weights_[iselect][i];
    1217        3828 :         average_weights_[iselect][i]+=decay_w_*delta;
    1218             :       }
    1219             :     } else {
    1220             :       firstTimeW[iselect] = false;
    1221          66 :       for(unsigned i=0; i<nrep_; ++i) {
    1222          88 :         average_weights_[iselect][i] = bias[i]/norm;
    1223             :       }
    1224             :     }
    1225             : 
    1226             :     // set average back into bias and set norm to one
    1227       11616 :     for(unsigned i=0; i<nrep_; ++i) bias[i] = average_weights_[iselect][i];
    1228             :     // set local weight, norm and weight variance
    1229        3872 :     fact = bias[replica_];
    1230             :     norm = 1.0;
    1231        5808 :     for(unsigned i=0; i<nrep_; ++i) var_fact += (bias[i]/norm-ave_fact)*(bias[i]/norm-ave_fact);
    1232        3872 :     getPntrToComponent("weight")->set(fact);
    1233             :   } else {
    1234             :     // or arithmetic ones
    1235             :     norm = dnrep;
    1236         289 :     fact = 1.0/norm;
    1237             :   }
    1238        2225 : }
    1239             : 
    1240        2225 : void MetainferenceBase::get_sigma_mean(const double fact, const double var_fact, const vector<double> &mean)
    1241             : {
    1242        2225 :   const double dnrep    = static_cast<double>(nrep_);
    1243        2225 :   const double ave_fact = 1.0/dnrep;
    1244             : 
    1245        2225 :   vector<double> sigma_mean2_tmp(sigma_mean2_.size());
    1246             : 
    1247        2225 :   if(do_optsigmamean_>0) {
    1248             :     // remove first entry of the history vector
    1249         168 :     if(sigma_mean2_last_[iselect][0].size()==optsigmamean_stride_&&optsigmamean_stride_>0)
    1250           0 :       for(unsigned i=0; i<narg; ++i) sigma_mean2_last_[iselect][i].erase(sigma_mean2_last_[iselect][i].begin());
    1251             :     /* this is the current estimate of sigma mean for each argument
    1252             :        there is one of this per argument in any case  because it is
    1253             :        the maximum among these to be used in case of GAUSS/OUTLIER */
    1254          84 :     vector<double> sigma_mean2_now(narg,0);
    1255          84 :     if(do_reweight_) {
    1256           0 :       if(master) {
    1257           0 :         for(unsigned i=0; i<narg; ++i) {
    1258           0 :           double tmp1 = (fact*getCalcData(i)-ave_fact*mean[i])*(fact*getCalcData(i)-ave_fact*mean[i]);
    1259           0 :           double tmp2 = -2.*mean[i]*(fact-ave_fact)*(fact*getCalcData(i)-ave_fact*mean[i]);
    1260           0 :           sigma_mean2_now[i] = tmp1 + tmp2;
    1261             :         }
    1262           0 :         if(nrep_>1) multi_sim_comm.Sum(&sigma_mean2_now[0], narg);
    1263             :       }
    1264           0 :       comm.Sum(&sigma_mean2_now[0], narg);
    1265           0 :       for(unsigned i=0; i<narg; ++i) sigma_mean2_now[i] = dnrep/(dnrep-1.)*(sigma_mean2_now[i] + mean[i]*mean[i]*var_fact);
    1266             :     } else {
    1267          84 :       if(master) {
    1268         630 :         for(unsigned i=0; i<narg; ++i) {
    1269         630 :           double tmp  = getCalcData(i)-mean[i];
    1270         630 :           sigma_mean2_now[i] = fact*tmp*tmp;
    1271             :         }
    1272          84 :         if(nrep_>1) multi_sim_comm.Sum(&sigma_mean2_now[0], narg);
    1273             :       }
    1274         168 :       comm.Sum(&sigma_mean2_now[0], narg);
    1275        2520 :       for(unsigned i=0; i<narg; ++i) sigma_mean2_now[i] /= dnrep;
    1276             :     }
    1277             : 
    1278             :     // add sigma_mean2 to history
    1279          84 :     if(optsigmamean_stride_>0) {
    1280           0 :       for(unsigned i=0; i<narg; ++i) sigma_mean2_last_[iselect][i].push_back(sigma_mean2_now[i]);
    1281             :     } else {
    1282        3780 :       for(unsigned i=0; i<narg; ++i) if(sigma_mean2_now[i] > sigma_mean2_last_[iselect][i][0]) sigma_mean2_last_[iselect][i][0] = sigma_mean2_now[i];
    1283             :     }
    1284             : 
    1285          84 :     if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
    1286        1260 :       for(unsigned i=0; i<narg; ++i) {
    1287             :         /* set to the maximum in history vector */
    1288        5040 :         sigma_mean2_tmp[i] = *max_element(sigma_mean2_last_[iselect][i].begin(), sigma_mean2_last_[iselect][i].end());
    1289             :         /* the standard error of the mean */
    1290        2520 :         valueSigmaMean[i]->set(sqrt(sigma_mean2_tmp[i]));
    1291        1260 :         if(noise_type_==GENERIC) {
    1292           0 :           sigma_min_[i] = sqrt(sigma_mean2_tmp[i]);
    1293           0 :           if(sigma_[i] < sigma_min_[i]) sigma_[i] = sigma_min_[i];
    1294             :         }
    1295             :       }
    1296           0 :     } else if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
    1297             :       // find maximum for each data point
    1298             :       vector <double> max_values;
    1299           0 :       for(unsigned i=0; i<narg; ++i) max_values.push_back(*max_element(sigma_mean2_last_[iselect][i].begin(), sigma_mean2_last_[iselect][i].end()));
    1300             :       // find maximum across data points
    1301           0 :       const double max_now = *max_element(max_values.begin(), max_values.end());
    1302             :       // set new value
    1303           0 :       sigma_mean2_tmp[0] = max_now;
    1304           0 :       valueSigmaMean[0]->set(sqrt(sigma_mean2_tmp[0]));
    1305             :     }
    1306             :     // endif sigma optimization
    1307             :   } else {
    1308        2141 :     if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
    1309        9724 :       for(unsigned i=0; i<narg; ++i) {
    1310       29172 :         sigma_mean2_tmp[i] = sigma_mean2_last_[iselect][i][0];
    1311       19448 :         valueSigmaMean[i]->set(sqrt(sigma_mean2_tmp[i]));
    1312             :       }
    1313         277 :     } else if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
    1314         554 :       sigma_mean2_tmp[0] = sigma_mean2_last_[iselect][0][0];
    1315         554 :       valueSigmaMean[0]->set(sqrt(sigma_mean2_tmp[0]));
    1316             :     }
    1317             :   }
    1318             : 
    1319        2225 :   sigma_mean2_ = sigma_mean2_tmp;
    1320        2225 : }
    1321             : 
    1322        2225 : void MetainferenceBase::replica_averaging(const double fact, vector<double> &mean, vector<double> &dmean_b)
    1323             : {
    1324        2225 :   if(master) {
    1325       12490 :     for(unsigned i=0; i<narg; ++i) mean[i] = fact*calc_data_[i];
    1326        2249 :     if(nrep_>1) multi_sim_comm.Sum(&mean[0], narg);
    1327             :   }
    1328        4450 :   comm.Sum(&mean[0], narg);
    1329             :   // set the derivative of the mean with respect to the bias
    1330       37706 :   for(unsigned i=0; i<narg; ++i) dmean_b[i] = fact/kbt_*(calc_data_[i]-mean[i])*decay_w_;
    1331             : 
    1332             :   // this is only for generic metainference
    1333        2225 :   if(firstTime) {ftilde_ = mean; firstTime = false;}
    1334        2225 : }
    1335             : 
    1336           0 : void MetainferenceBase::do_regression_zero(const vector<double> &mean)
    1337             : {
    1338             : // parameters[i] = scale_ * mean[i]: find scale_ with linear regression
    1339             :   double num = 0.0;
    1340             :   double den = 0.0;
    1341           0 :   for(unsigned i=0; i<parameters.size(); ++i) {
    1342           0 :     num += mean[i] * parameters[i];
    1343           0 :     den += mean[i] * mean[i];
    1344             :   }
    1345           0 :   if(den>0) {
    1346           0 :     scale_ = num / den;
    1347             :   } else {
    1348           0 :     scale_ = 1.0;
    1349             :   }
    1350           0 : }
    1351             : 
    1352        2225 : double MetainferenceBase::getScore()
    1353             : {
    1354             :   /* Metainference */
    1355             :   /* 1) collect weights */
    1356        2225 :   double fact = 0.;
    1357        2225 :   double var_fact = 0.;
    1358        2225 :   get_weights(fact, var_fact);
    1359             : 
    1360             :   /* 2) calculate average */
    1361        4450 :   vector<double> mean(getNarg(),0);
    1362             :   // this is the derivative of the mean with respect to the argument
    1363        2225 :   vector<double> dmean_x(getNarg(),fact);
    1364             :   // this is the derivative of the mean with respect to the bias
    1365        4450 :   vector<double> dmean_b(getNarg(),0);
    1366             :   // calculate it
    1367        2225 :   replica_averaging(fact, mean, dmean_b);
    1368             : 
    1369             :   /* 3) calculates parameters */
    1370        2225 :   get_sigma_mean(fact, var_fact, mean);
    1371             : 
    1372             :   // in case of regression with zero intercept, calculate scale
    1373        2225 :   if(doregres_zero_ && getStep()%nregres_zero_==0) do_regression_zero(mean);
    1374             : 
    1375             :   /* 4) run monte carlo */
    1376        2225 :   double ene = doMonteCarlo(mean);
    1377             : 
    1378             :   // calculate bias and forces
    1379        2225 :   switch(noise_type_) {
    1380             :   case GAUSS:
    1381         271 :     getEnergyForceGJ(mean, dmean_x, dmean_b);
    1382             :     break;
    1383             :   case MGAUSS:
    1384         160 :     getEnergyForceGJE(mean, dmean_x, dmean_b);
    1385             :     break;
    1386             :   case OUTLIERS:
    1387           6 :     getEnergyForceSP(mean, dmean_x, dmean_b);
    1388             :     break;
    1389             :   case MOUTLIERS:
    1390        1776 :     getEnergyForceSPE(mean, dmean_x, dmean_b);
    1391             :     break;
    1392             :   case GENERIC:
    1393          12 :     getEnergyForceMIGEN(mean, dmean_x, dmean_b);
    1394             :     break;
    1395             :   }
    1396             : 
    1397        2225 :   return ene;
    1398             : }
    1399             : 
    1400          86 : void MetainferenceBase::writeStatus()
    1401             : {
    1402         172 :   if(!doscore_) return;
    1403          31 :   sfile_.rewind();
    1404          62 :   sfile_.printField("time",getTimeStep()*getStep());
    1405             :   //nsel
    1406         124 :   for(unsigned i=0; i<sigma_mean2_last_.size(); i++) {
    1407             :     std::string msg_i,msg_j;
    1408          31 :     Tools::convert(i,msg_i);
    1409             :     vector <double> max_values;
    1410             :     //narg
    1411        2528 :     for(unsigned j=0; j<narg; ++j) {
    1412        2497 :       Tools::convert(j,msg_j);
    1413        4994 :       std::string msg = msg_i+"_"+msg_j;
    1414        2497 :       if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
    1415        9880 :         sfile_.printField("sigmaMean_"+msg,sqrt(*max_element(sigma_mean2_last_[i][j].begin(), sigma_mean2_last_[i][j].end())));
    1416             :       } else {
    1417             :         // find maximum for each data point
    1418          81 :         max_values.push_back(*max_element(sigma_mean2_last_[i][j].begin(), sigma_mean2_last_[i][j].end()));
    1419             :       }
    1420             :     }
    1421          31 :     if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
    1422             :       // find maximum across data points
    1423          16 :       const double max_now = sqrt(*max_element(max_values.begin(), max_values.end()));
    1424           8 :       Tools::convert(0,msg_j);
    1425          16 :       std::string msg = msg_i+"_"+msg_j;
    1426          16 :       sfile_.printField("sigmaMean_"+msg, max_now);
    1427             :     }
    1428             :   }
    1429        4987 :   for(unsigned i=0; i<sigma_.size(); ++i) {
    1430             :     std::string msg;
    1431        2478 :     Tools::convert(i,msg);
    1432        4956 :     sfile_.printField("sigma_"+msg,sigma_[i]);
    1433             :   }
    1434          31 :   if(noise_type_==GENERIC) {
    1435           5 :     for(unsigned i=0; i<ftilde_.size(); ++i) {
    1436             :       std::string msg;
    1437           2 :       Tools::convert(i,msg);
    1438           4 :       sfile_.printField("ftilde_"+msg,ftilde_[i]);
    1439             :     }
    1440             :   }
    1441          62 :   sfile_.printField("scale0_",scale_);
    1442          62 :   sfile_.printField("offset0_",offset_);
    1443         124 :   for(unsigned i=0; i<average_weights_.size(); i++) {
    1444             :     std::string msg_i;
    1445          31 :     Tools::convert(i,msg_i);
    1446          93 :     sfile_.printField("weight_"+msg_i,average_weights_[i][replica_]);
    1447             :   }
    1448          31 :   sfile_.printField();
    1449          31 :   sfile_.flush();
    1450             : }
    1451             : 
    1452             : }
    1453        5874 : }
    1454             : 

Generated by: LCOV version 1.14