LCOV - code coverage report
Current view: top level - bias - MetaD.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 836 929 90.0 %
Date: 2019-08-13 10:15:31 Functions: 34 36 94.4 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2011-2019 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "Bias.h"
      23             : #include "ActionRegister.h"
      24             : #include "core/ActionSet.h"
      25             : #include "tools/Grid.h"
      26             : #include "core/PlumedMain.h"
      27             : #include "core/Atoms.h"
      28             : #include "tools/Exception.h"
      29             : #include "core/FlexibleBin.h"
      30             : #include "tools/Matrix.h"
      31             : #include "tools/Random.h"
      32             : #include <string>
      33             : #include <cstring>
      34             : #include "tools/File.h"
      35             : #include <iostream>
      36             : #include <limits>
      37             : #include <ctime>
      38             : #include <memory>
      39             : 
      40             : #define DP2CUTOFF 6.25
      41             : 
      42             : using namespace std;
      43             : 
      44             : 
      45             : namespace PLMD {
      46             : namespace bias {
      47             : 
      48             : //+PLUMEDOC BIAS METAD
      49             : /*
      50             : Used to performed metadynamics on one or more collective variables.
      51             : 
      52             : In a metadynamics simulations a history dependent bias composed of
      53             : intermittently added Gaussian functions is added to the potential \cite metad.
      54             : 
      55             : \f[
      56             : V(\vec{s},t) = \sum_{ k \tau < t} W(k \tau)
      57             : \exp\left(
      58             : -\sum_{i=1}^{d} \frac{(s_i-s_i^{(0)}(k \tau))^2}{2\sigma_i^2}
      59             : \right).
      60             : \f]
      61             : 
      62             : This potential forces the system away from the kinetic traps in the potential energy surface
      63             : and out into the unexplored parts of the energy landscape. Information on the Gaussian
      64             : functions from which this potential is composed is output to a file called HILLS, which
      65             : is used both the restart the calculation and to reconstruct the free energy as a function of the CVs.
      66             : The free energy can be reconstructed from a metadynamics calculation because the final bias is given
      67             : by:
      68             : 
      69             : \f[
      70             : V(\vec{s}) = -F(\vec{s})
      71             : \f]
      72             : 
      73             : During post processing the free energy can be calculated in this way using the \ref sum_hills
      74             : utility.
      75             : 
      76             : In the simplest possible implementation of a metadynamics calculation the expense of a metadynamics
      77             : calculation increases with the length of the simulation as one has to, at every step, evaluate
      78             : the values of a larger and larger number of Gaussian kernels. To avoid this issue you can
      79             : store the bias on a grid.  This approach is similar to that proposed in \cite babi08jcp but has the
      80             : advantage that the grid spacing is independent on the Gaussian width.
      81             : Notice that you should
      82             : provide either the number of bins for every collective variable (GRID_BIN) or
      83             : the desired grid spacing (GRID_SPACING). In case you provide both PLUMED will use
      84             : the most conservative choice (highest number of bins) for each dimension.
      85             : In case you do not provide any information about bin size (neither GRID_BIN nor GRID_SPACING)
      86             : and if Gaussian width is fixed PLUMED will use 1/5 of the Gaussian width as grid spacing.
      87             : This default choice should be reasonable for most applications.
      88             : 
      89             : Metadynamics can be restarted either from a HILLS file as well as from a GRID, in this second
      90             : case one can first save a GRID using GRID_WFILE (and GRID_WSTRIDE) and at a later stage read
      91             : it using GRID_RFILE.
      92             : 
      93             : Another option that is available in plumed is well-tempered metadynamics \cite Barducci:2008. In this
      94             : variant of metadynamics the heights of the Gaussian hills are scaled at each step so the bias is now
      95             : given by:
      96             : 
      97             : \f[
      98             : V({s},t)= \sum_{t'=0,\tau_G,2\tau_G,\dots}^{t'<t} W e^{-V({s}({q}(t'),t')/\Delta T} \exp\left(
      99             : -\sum_{i=1}^{d} \frac{(s_i({q})-s_i({q}(t'))^2}{2\sigma_i^2}
     100             : \right),
     101             : \f]
     102             : 
     103             : This method ensures that the bias converges more smoothly. It should be noted that, in the case of well-tempered metadynamics, in
     104             : the output printed the Gaussian height is re-scaled using the bias factor.
     105             : Also notice that with well-tempered metadynamics the HILLS file does not contain the bias,
     106             : but the negative of the free-energy estimate. This choice has the advantage that
     107             : one can restart a simulation using a different value for the \f$\Delta T\f$. The applied bias will be scaled accordingly.
     108             : 
     109             : Note that you can use here also the flexible Gaussian approach  \cite Branduardi:2012dl
     110             : in which you can adapt the Gaussian to the extent of Cartesian space covered by a variable or
     111             : to the space in collective variable covered in a given time. In this case the width of the deposited
     112             : Gaussian potential is denoted by one value only that is a Cartesian space (ADAPTIVE=GEOM) or a time
     113             : (ADAPTIVE=DIFF). Note that a specific integration technique for the deposited Gaussian kernels
     114             : should be used in this case. Check the documentation for utility sum_hills.
     115             : 
     116             : With the keyword INTERVAL one changes the metadynamics algorithm setting the bias force equal to zero
     117             : outside boundary \cite baftizadeh2012protein. If, for example, metadynamics is performed on a CV s and one is interested only
     118             : to the free energy for s > boundary, the history dependent potential is still updated according to the above
     119             : equations but the metadynamics force is set to zero for s < boundary. Notice that Gaussian kernels are added also
     120             : if s < boundary, as the tails of these Gaussian kernels influence VG in the relevant region s > boundary. In this way, the
     121             : force on the system in the region s > boundary comes from both metadynamics and the force field, in the region
     122             : s < boundary only from the latter. This approach allows obtaining a history-dependent bias potential VG that
     123             : fluctuates around a stable estimator, equal to the negative of the free energy far enough from the
     124             : boundaries. Note that:
     125             : - It works only for one-dimensional biases;
     126             : - It works both with and without GRID;
     127             : - The interval limit boundary in a region where the free energy derivative is not large;
     128             : - If in the region outside the limit boundary the system has a free energy minimum, the INTERVAL keyword should
     129             :   be used together with a \ref UPPER_WALLS or \ref LOWER_WALLS at boundary.
     130             : 
     131             : As a final note, since version 2.0.2 when the system is outside of the selected interval the force
     132             : is set to zero and the bias value to the value at the corresponding boundary. This allows acceptances
     133             : for replica exchange methods to be computed correctly.
     134             : 
     135             : Multiple walkers  \cite multiplewalkers can also be used. See below the examples.
     136             : 
     137             : 
     138             : The \f$c(t)\f$ reweighting factor can also be calculated on the fly using the equations
     139             : presented in \cite Tiwary_jp504920s.
     140             : The expression used to calculate \f$c(t)\f$ follows directly from Eq. 3 in \cite Tiwary_jp504920s,
     141             : where \f$F(\vec{s})=-\gamma/(\gamma-1) V(\vec{s})\f$.
     142             : This gives smoother results than equivalent Eqs. 13 and Eqs. 14 in that paper.
     143             : The \f$c(t)\f$ is given by the rct component while the bias
     144             : normalized by \f$c(t)\f$ is given by the rbias component (rbias=bias-rct) which can be used
     145             : to obtain a reweighted histogram.
     146             : The calculation of \f$c(t)\f$ is enabled by using the keyword CALC_RCT.
     147             : By default \f$c(t)\f$ is updated every time the bias changes, but if this slows down the simulation
     148             : the keyword RCT_USTRIDE can be set to a value higher than 1.
     149             : This option requires that a grid is used.
     150             : 
     151             : Additional material and examples can be also found in the tutorials:
     152             : 
     153             : - \ref belfast-6
     154             : - \ref belfast-7
     155             : - \ref belfast-8
     156             : 
     157             : Notice that at variance with PLUMED 1.3 it is now straightforward to apply concurrent metadynamics
     158             : as done e.g. in Ref. \cite gil2015enhanced . This indeed can be obtained by using the METAD
     159             : action multiple times in the same input file.
     160             : 
     161             : \par Examples
     162             : 
     163             : The following input is for a standard metadynamics calculation using as
     164             : collective variables the distance between atoms 3 and 5
     165             : and the distance between atoms 2 and 4. The value of the CVs and
     166             : the metadynamics bias potential are written to the COLVAR file every 100 steps.
     167             : \plumedfile
     168             : DISTANCE ATOMS=3,5 LABEL=d1
     169             : DISTANCE ATOMS=2,4 LABEL=d2
     170             : METAD ARG=d1,d2 SIGMA=0.2,0.2 HEIGHT=0.3 PACE=500 LABEL=restraint
     171             : PRINT ARG=d1,d2,restraint.bias STRIDE=100  FILE=COLVAR
     172             : \endplumedfile
     173             : (See also \ref DISTANCE \ref PRINT).
     174             : 
     175             : \par
     176             : If you use adaptive Gaussian kernels, with diffusion scheme where you use
     177             : a Gaussian that should cover the space of 20 time steps in collective variables.
     178             : Note that in this case the histogram correction is needed when summing up hills.
     179             : \plumedfile
     180             : DISTANCE ATOMS=3,5 LABEL=d1
     181             : DISTANCE ATOMS=2,4 LABEL=d2
     182             : METAD ARG=d1,d2 SIGMA=20 HEIGHT=0.3 PACE=500 LABEL=restraint ADAPTIVE=DIFF
     183             : PRINT ARG=d1,d2,restraint.bias STRIDE=100  FILE=COLVAR
     184             : \endplumedfile
     185             : 
     186             : \par
     187             : If you use adaptive Gaussian kernels, with geometrical scheme where you use
     188             : a Gaussian that should cover the space of 0.05 nm in Cartesian space.
     189             : Note that in this case the histogram correction is needed when summing up hills.
     190             : \plumedfile
     191             : DISTANCE ATOMS=3,5 LABEL=d1
     192             : DISTANCE ATOMS=2,4 LABEL=d2
     193             : METAD ARG=d1,d2 SIGMA=0.05 HEIGHT=0.3 PACE=500 LABEL=restraint ADAPTIVE=GEOM
     194             : PRINT ARG=d1,d2,restraint.bias STRIDE=100  FILE=COLVAR
     195             : \endplumedfile
     196             : 
     197             : \par
     198             : When using adaptive Gaussian kernels you might want to limit how the hills width can change.
     199             : You can use SIGMA_MIN and SIGMA_MAX keywords.
     200             : The sigmas should specified in terms of CV so you should use the CV units.
     201             : Note that if you use a negative number, this means that the limit is not set.
     202             : Note also that in this case the histogram correction is needed when summing up hills.
     203             : \plumedfile
     204             : DISTANCE ATOMS=3,5 LABEL=d1
     205             : DISTANCE ATOMS=2,4 LABEL=d2
     206             : METAD ...
     207             :   ARG=d1,d2 SIGMA=0.05 HEIGHT=0.3 PACE=500 LABEL=restraint ADAPTIVE=GEOM
     208             :   SIGMA_MIN=0.2,0.1 SIGMA_MAX=0.5,1.0
     209             : ... METAD
     210             : PRINT ARG=d1,d2,restraint.bias STRIDE=100  FILE=COLVAR
     211             : \endplumedfile
     212             : 
     213             : \par
     214             : Multiple walkers can be also use as in  \cite multiplewalkers
     215             : These are enabled by setting the number of walker used, the id of the
     216             : current walker which interprets the input file, the directory where the
     217             : hills containing files resides, and the frequency to read the other walkers.
     218             : Here is an example
     219             : \plumedfile
     220             : DISTANCE ATOMS=3,5 LABEL=d1
     221             : METAD ...
     222             :    ARG=d1 SIGMA=0.05 HEIGHT=0.3 PACE=500 LABEL=restraint
     223             :    WALKERS_N=10
     224             :    WALKERS_ID=3
     225             :    WALKERS_DIR=../
     226             :    WALKERS_RSTRIDE=100
     227             : ... METAD
     228             : \endplumedfile
     229             : where  WALKERS_N is the total number of walkers, WALKERS_ID is the
     230             : id of the present walker (starting from 0 ) and the WALKERS_DIR is the directory
     231             : where all the walkers are located. WALKERS_RSTRIDE is the number of step between
     232             : one update and the other. Since version 2.2.5, hills files are automatically
     233             : flushed every WALKERS_RSTRIDE steps.
     234             : 
     235             : \par
     236             : The \f$c(t)\f$ reweighting factor can be calculated on the fly using the equations
     237             : presented in \cite Tiwary_jp504920s as described above.
     238             : This is enabled by using the keyword CALC_RCT,
     239             : and can be done only if the bias is defined on a grid.
     240             : \plumedfile
     241             : phi: TORSION ATOMS=1,2,3,4
     242             : psi: TORSION ATOMS=5,6,7,8
     243             : 
     244             : METAD ...
     245             :  LABEL=metad
     246             :  ARG=phi,psi SIGMA=0.20,0.20 HEIGHT=1.20 BIASFACTOR=5 TEMP=300.0 PACE=500
     247             :  GRID_MIN=-pi,-pi GRID_MAX=pi,pi GRID_BIN=150,150
     248             :  CALC_RCT
     249             :  RCT_USTRIDE=10
     250             : ... METAD
     251             : \endplumedfile
     252             : Here we have asked that the calculation is performed every 10 hills deposition by using
     253             : RCT_USTRIDE keyword. If this keyword is not given, the calculation will
     254             : by default be performed every time the bias changes. The \f$c(t)\f$ reweighting factor will be given
     255             : in the rct component while the instantaneous value of the bias potential
     256             : normalized using the \f$c(t)\f$ reweighting factor is given in the rbias component
     257             : [rbias=bias-rct] which can be used to obtain a reweighted histogram or
     258             : free energy surface using the \ref HISTOGRAM analysis.
     259             : 
     260             : \par
     261             : The kinetics of the transitions between basins can also be analyzed on the fly as
     262             : in \cite PRL230602. The flag ACCELERATION turn on accumulation of the acceleration
     263             : factor that can then be used to determine the rate. This method can be used together
     264             : with \ref COMMITTOR analysis to stop the simulation when the system get to the target basin.
     265             : It must be used together with Well-Tempered Metadynamics. If restarting from a previous
     266             : metadynamics you need to use the ACCELERATION_RFILE keyword to give the name of the
     267             : data file from which the previous value of the acceleration factor should be read, otherwise the
     268             : calculation of the acceleration factor will be wrong.
     269             : 
     270             : \par
     271             : By using the flag FREQUENCY_ADAPTIVE the frequency adaptive scheme introduced in \cite Wang-JCP-2018
     272             : is turned on. The frequency for hill addition then changes dynamically based on the acceleration factor
     273             : according to the following equation
     274             : \f[
     275             : \tau_{\mathrm{dep}}(t) =
     276             : \min\left[
     277             : \tau_0 \cdot
     278             : \max\left[\frac{\alpha(t)}{\theta},1\right]
     279             : ,\tau_{c}
     280             : \right]
     281             : \f]
     282             : where \f$\tau_0\f$ is the initial hill addition frequency given by the PACE keyword,
     283             : \f$\tau_{c}\f$ is the maximum allowed frequency given by the FA_MAX_PACE keyword,
     284             : \f$\alpha(t)\f$ is the instantaneous acceleration factor at time \f$t\f$,
     285             : and \f$\theta\f$ is a threshold value that acceleration factor has to reach before
     286             : triggering a change in the hill addition frequency given by the FA_MIN_ACCELERATION keyword.
     287             : The frequency for updating the hill addition frequency according to this equation is
     288             : given by the FA_UPDATE_FREQUENCY keyword, by default it is the same as the value given
     289             : in PACE. The hill hill addition frequency increase monotonously such that if the
     290             : instantaneous acceleration factor is lower than in the previous updating step the
     291             : previous \f$\tau_{\mathrm{dep}}\f$ is kept rather than updating it to a lower value.
     292             : The instantaneous hill addition frequency \f$\tau_{\mathrm{dep}}(t)\f$ is outputted
     293             : to pace component. Note that if restarting from a previous metadynamics run you need to
     294             : use the ACCELERATION_RFILE keyword to read in the acceleration factors from the
     295             : previous run, otherwise the hill addition frequency will start from the initial
     296             : frequency.
     297             : 
     298             : 
     299             : \par
     300             : You can also provide a target distribution using the keyword TARGET
     301             : \cite white2015designing
     302             : \cite marinelli2015ensemble
     303             : \cite gil2016empirical
     304             : The TARGET should be a grid containing a free-energy (i.e. the -\f$k_B\f$T*log of the desired target distribution).
     305             : Gaussian kernels will then be scaled by a factor
     306             : \f[
     307             : e^{\beta(\tilde{F}(s)-\tilde{F}_{max})}
     308             : \f]
     309             : Here \f$\tilde{F}(s)\f$ is the free energy defined on the grid and \f$\tilde{F}_{max}\f$ its maximum value.
     310             : Notice that we here used the maximum value as in ref \cite gil2016empirical
     311             : This choice allows to avoid exceedingly large Gaussian kernels to be added. However,
     312             : it could make the Gaussian too small. You should always choose carefully the HEIGHT parameter
     313             : in this case.
     314             : The grid file should be similar to other PLUMED grid files in that it should contain
     315             : both the target free-energy and its derivatives.
     316             : 
     317             : Notice that if you wish your simulation to converge to the target free energy you should use
     318             : the DAMPFACTOR command to provide a global tempering \cite dama2014well
     319             : Alternatively, if you use a BIASFACTOR your simulation will converge to a free
     320             : energy that is a linear combination of the target free energy and of the intrinsic free energy
     321             : determined by the original force field.
     322             : 
     323             : \plumedfile
     324             : DISTANCE ATOMS=3,5 LABEL=d1
     325             : METAD ...
     326             :  LABEL=t1
     327             :  ARG=d1 SIGMA=0.05 TAU=200 DAMPFACTOR=100 PACE=250
     328             :  GRID_MIN=1.14 GRID_MAX=1.32 GRID_BIN=6
     329             :  TARGET=dist.grid
     330             : ... METAD
     331             : 
     332             : PRINT ARG=d1,t1.bias STRIDE=100 FILE=COLVAR
     333             : \endplumedfile
     334             : 
     335             : The file dist.dat for this calculation would read:
     336             : 
     337             : \auxfile{dist.grid}
     338             : #! FIELDS d1 t1.target der_d1
     339             : #! SET min_d1 1.14
     340             : #! SET max_d1 1.32
     341             : #! SET nbins_d1  6
     342             : #! SET periodic_d1 false
     343             :    1.1400   0.0031   0.1101
     344             :    1.1700   0.0086   0.2842
     345             :    1.2000   0.0222   0.6648
     346             :    1.2300   0.0521   1.4068
     347             :    1.2600   0.1120   2.6873
     348             :    1.2900   0.2199   4.6183
     349             :    1.3200   0.3948   7.1055
     350             : \endauxfile
     351             : 
     352             : Notice that BIASFACTOR can also be chosen as equal to 1. In this case one will perform
     353             : unbiased sampling. Instead of using HEIGHT, one should provide the TAU parameter.
     354             : \plumedfile
     355             : d: DISTANCE ATOMS=3,5
     356             : METAD ARG=d SIGMA=0.1 TAU=4.0 TEMP=300 PACE=100 BIASFACTOR=1.0
     357             : \endplumedfile
     358             : The HILLS file obtained will still work with `plumed sum_hills` so as to plot a free-energy.
     359             : The case where this makes sense is probably that of RECT simulations.
     360             : 
     361             : Regarding RECT simulations, you can also use the RECT keyword so as to avoid using multiple input files.
     362             : For instance, a single input file will be
     363             : \plumedfile
     364             : d: DISTANCE ATOMS=3,5
     365             : METAD ARG=d SIGMA=0.1 TAU=4.0 TEMP=300 PACE=100 RECT=1.0,1.5,2.0,3.0
     366             : \endplumedfile
     367             : The number of elements in the RECT array should be equal to the number of replicas.
     368             : 
     369             : 
     370             : 
     371             : 
     372             : 
     373             : */
     374             : //+ENDPLUMEDOC
     375             : 
     376         973 : class MetaD : public Bias {
     377             : 
     378             : private:
     379       56927 :   struct Gaussian {
     380             :     vector<double> center;
     381             :     vector<double> sigma;
     382             :     double height;
     383             :     bool   multivariate; // this is required to discriminate the one dimensional case
     384             :     vector<double> invsigma;
     385        5291 :     Gaussian(const vector<double> & center,const vector<double> & sigma,double height, bool multivariate ):
     386        5291 :       center(center),sigma(sigma),height(height),multivariate(multivariate),invsigma(sigma) {
     387             :       // to avoid troubles from zero element in flexible hills
     388       35648 :         for(unsigned i=0; i<invsigma.size(); ++i) if(abs(invsigma[i])>1.e-20) invsigma[i]=1.0/invsigma[i] ; else invsigma[i]=0.0;
     389        5291 :     }
     390             :   };
     391         290 :   struct TemperingSpecs {
     392             :     bool is_active;
     393             :     std::string name_stem;
     394             :     std::string name;
     395             :     double biasf;
     396             :     double threshold;
     397             :     double alpha;
     398         145 :     inline TemperingSpecs(bool is_active, const std::string &name_stem, const std::string &name, double biasf, double threshold, double alpha) :
     399         145 :       is_active(is_active), name_stem(name_stem), name(name), biasf(biasf), threshold(threshold), alpha(alpha)
     400         145 :     {}
     401             :   };
     402             :   vector<double> sigma0_;
     403             :   vector<double> sigma0min_;
     404             :   vector<double> sigma0max_;
     405             :   vector<Gaussian> hills_;
     406             :   OFile hillsOfile_;
     407             :   OFile gridfile_;
     408             :   std::unique_ptr<GridBase> BiasGrid_;
     409             :   bool storeOldGrids_;
     410             :   int wgridstride_;
     411             :   bool grid_;
     412             :   double height0_;
     413             :   double biasf_;
     414             :   static const size_t n_tempering_options_ = 1;
     415             :   static const string tempering_names_[1][2];
     416             :   double dampfactor_;
     417             :   struct TemperingSpecs tt_specs_;
     418             :   std::string targetfilename_;
     419             :   std::unique_ptr<GridBase> TargetGrid_;
     420             :   double kbt_;
     421             :   int stride_;
     422             :   bool welltemp_;
     423             :   //
     424             :   int current_stride;
     425             :   bool freq_adaptive_;
     426             :   int fa_update_frequency_;
     427             :   int fa_max_stride_;
     428             :   double fa_min_acceleration_;
     429             :   //
     430             :   std::unique_ptr<double[]> dp_;
     431             :   int adaptive_;
     432             :   std::unique_ptr<FlexibleBin> flexbin;
     433             :   int mw_n_;
     434             :   string mw_dir_;
     435             :   int mw_id_;
     436             :   int mw_rstride_;
     437             :   bool walkers_mpi;
     438             :   unsigned mpi_nw_;
     439             :   unsigned mpi_mw_;
     440             :   bool flying;
     441             :   bool acceleration;
     442             :   double acc;
     443             :   double acc_restart_mean_;
     444             :   bool calc_max_bias_;
     445             :   double max_bias_;
     446             :   bool calc_transition_bias_;
     447             :   double transition_bias_;
     448             :   vector<vector<double> > transitionwells_;
     449             :   vector<std::unique_ptr<IFile>> ifiles;
     450             :   vector<string> ifilesnames;
     451             :   double uppI_;
     452             :   double lowI_;
     453             :   bool doInt_;
     454             :   bool isFirstStep;
     455             :   bool calc_rct_;
     456             :   double reweight_factor_;
     457             :   unsigned rct_ustride_;
     458             :   double work_;
     459             :   long int last_step_warn_grid;
     460             : 
     461             :   static void   registerTemperingKeywords(const std::string &name_stem, const std::string &name, Keywords &keys);
     462             :   void   readTemperingSpecs(TemperingSpecs &t_specs);
     463             :   void   logTemperingSpecs(const TemperingSpecs &t_specs);
     464             :   void   readGaussians(IFile*);
     465             :   void   writeGaussian(const Gaussian&,OFile&);
     466             :   void   addGaussian(const Gaussian&);
     467             :   double getHeight(const vector<double>&);
     468             :   void   temperHeight(double &height, const TemperingSpecs &t_specs, const double tempering_bias);
     469             :   double getBiasAndDerivatives(const vector<double>&,double* der=NULL);
     470             :   double evaluateGaussian(const vector<double>&, const Gaussian&,double* der=NULL);
     471             :   double getGaussianNormalization( const Gaussian& );
     472             :   vector<unsigned> getGaussianSupport(const Gaussian&);
     473             :   bool   scanOneHill(IFile *ifile,  vector<Value> &v, vector<double> &center, vector<double>  &sigma, double &height, bool &multivariate);
     474             :   void   computeReweightingFactor();
     475             :   double getTransitionBarrierBias();
     476             :   void updateFrequencyAdaptiveStride();
     477             :   string fmt;
     478             : 
     479             : public:
     480             :   explicit MetaD(const ActionOptions&);
     481             :   void calculate() override;
     482             :   void update() override;
     483             :   static void registerKeywords(Keywords& keys);
     484        8280 :   bool checkNeedsGradients()const override {if(adaptive_==FlexibleBin::geometry) {return true;} else {return false;}}
     485             : };
     486             : 
     487        8117 : PLUMED_REGISTER_ACTION(MetaD,"METAD")
     488             : 
     489         147 : void MetaD::registerKeywords(Keywords& keys) {
     490         147 :   Bias::registerKeywords(keys);
     491             :   keys.addOutputComponent("rbias","CALC_RCT","the instantaneous value of the bias normalized using the \\f$c(t)\\f$ reweighting factor [rbias=bias-rct]."
     492         588 :                           "This component can be used to obtain a reweighted histogram.");
     493         588 :   keys.addOutputComponent("rct","CALC_RCT","the reweighting factor \\f$c(t)\\f$.");
     494         588 :   keys.addOutputComponent("work","default","accumulator for work");
     495         588 :   keys.addOutputComponent("acc","ACCELERATION","the metadynamics acceleration factor");
     496         588 :   keys.addOutputComponent("maxbias", "CALC_MAX_BIAS", "the maximum of the metadynamics V(s, t)");
     497         588 :   keys.addOutputComponent("transbias", "CALC_TRANSITION_BIAS", "the metadynamics transition bias V*(t)");
     498         588 :   keys.addOutputComponent("pace","FREQUENCY_ADAPTIVE","the hill addition frequency when employing frequency adaptive metadynamics");
     499         294 :   keys.use("ARG");
     500         588 :   keys.add("compulsory","SIGMA","the widths of the Gaussian hills");
     501         588 :   keys.add("compulsory","PACE","the frequency for hill addition");
     502         735 :   keys.add("compulsory","FILE","HILLS","a file in which the list of added hills is stored");
     503         588 :   keys.add("optional","HEIGHT","the heights of the Gaussian hills. Compulsory unless TAU and either BIASFACTOR or DAMPFACTOR are given");
     504         588 :   keys.add("optional","FMT","specify format for HILLS files (useful for decrease the number of digits in regtests)");
     505         588 :   keys.add("optional","BIASFACTOR","use well tempered metadynamics and use this bias factor.  Please note you must also specify temp");
     506         588 :   keys.add("optional","RECT","list of bias factors for all the replicas");
     507         588 :   keys.add("optional","DAMPFACTOR","damp hills with exp(-max(V)/(\\f$k_B\\f$T*DAMPFACTOR)");
     508         294 :   for (size_t i = 0; i < n_tempering_options_; i++) {
     509         147 :     registerTemperingKeywords(tempering_names_[i][0], tempering_names_[i][1], keys);
     510             :   }
     511         588 :   keys.add("optional","TARGET","target to a predefined distribution");
     512         588 :   keys.add("optional","TEMP","the system temperature - this is only needed if you are doing well-tempered metadynamics");
     513         588 :   keys.add("optional","TAU","in well tempered metadynamics, sets height to (\\f$k_B \\Delta T\\f$*pace*timestep)/tau");
     514         588 :   keys.add("optional","GRID_MIN","the lower bounds for the grid");
     515         588 :   keys.add("optional","GRID_MAX","the upper bounds for the grid");
     516         588 :   keys.add("optional","GRID_BIN","the number of bins for the grid");
     517         588 :   keys.add("optional","GRID_SPACING","the approximate grid spacing (to be used as an alternative or together with GRID_BIN)");
     518             :   keys.addFlag("CALC_RCT",false,"calculate the \\f$c(t)\\f$ reweighting factor and use that to obtain the normalized bias [rbias=bias-rct]."
     519         441 :                "This method is not compatible with metadynamics not on a grid.");
     520             :   keys.add("optional","RCT_USTRIDE","the update stride for calculating the \\f$c(t)\\f$ reweighting factor."
     521         588 :            "The default 1, so \\f$c(t)\\f$ is updated every time the bias is updated.");
     522         441 :   keys.addFlag("GRID_SPARSE",false,"use a sparse grid to store hills");
     523         441 :   keys.addFlag("GRID_NOSPLINE",false,"don't use spline interpolation with grids");
     524         588 :   keys.add("optional","GRID_WSTRIDE","write the grid to a file every N steps");
     525         588 :   keys.add("optional","GRID_WFILE","the file on which to write the grid");
     526         588 :   keys.add("optional","GRID_RFILE","a grid file from which the bias should be read at the initial step of the simulation");
     527         441 :   keys.addFlag("STORE_GRIDS",false,"store all the grid files the calculation generates. They will be deleted if this keyword is not present");
     528         588 :   keys.add("optional","ADAPTIVE","use a geometric (=GEOM) or diffusion (=DIFF) based hills width scheme. Sigma is one number that has distance units or time step dimensions");
     529         588 :   keys.add("optional","WALKERS_ID", "walker id");
     530         588 :   keys.add("optional","WALKERS_N", "number of walkers");
     531         588 :   keys.add("optional","WALKERS_DIR", "shared directory with the hills files from all the walkers");
     532         588 :   keys.add("optional","WALKERS_RSTRIDE","stride for reading hills files");
     533         588 :   keys.add("optional","INTERVAL","one dimensional lower and upper limits, outside the limits the system will not feel the biasing force.");
     534         588 :   keys.add("optional","SIGMA_MAX","the upper bounds for the sigmas (in CV units) when using adaptive hills. Negative number means no bounds ");
     535         588 :   keys.add("optional","SIGMA_MIN","the lower bounds for the sigmas (in CV units) when using adaptive hills. Negative number means no bounds ");
     536         441 :   keys.addFlag("WALKERS_MPI",false,"Switch on MPI version of multiple walkers - not compatible with WALKERS_* options other than WALKERS_DIR");
     537         441 :   keys.addFlag("FLYING_GAUSSIAN",false,"Switch on flying Gaussian method, must be used with WALKERS_MPI");
     538         441 :   keys.addFlag("ACCELERATION",false,"Set to TRUE if you want to compute the metadynamics acceleration factor.");
     539         588 :   keys.add("optional","ACCELERATION_RFILE","a data file from which the acceleration should be read at the initial step of the simulation");
     540         441 :   keys.addFlag("CALC_MAX_BIAS", false, "Set to TRUE if you want to compute the maximum of the metadynamics V(s, t)");
     541         441 :   keys.addFlag("CALC_TRANSITION_BIAS", false, "Set to TRUE if you want to compute a metadynamics transition bias V*(t)");
     542         588 :   keys.add("numbered", "TRANSITIONWELL", "This keyword appears multiple times as TRANSITIONWELL followed by an integer. Each specifies the coordinates for one well as in transition-tempered metadynamics. At least one must be provided.");
     543         441 :   keys.addFlag("FREQUENCY_ADAPTIVE",false,"Set to TRUE if you want to enable frequency adaptive metadynamics such that the frequency for hill addition to change dynamically based on the acceleration factor.");
     544         588 :   keys.add("optional","FA_UPDATE_FREQUENCY","the frequency for updating the hill addition pace in frequency adaptive metadynamics, by default this is equal to the value given in PACE");
     545         588 :   keys.add("optional","FA_MAX_PACE","the maximum hill addition frequency allowed in frequency adaptive metadynamics. By default there is no maximum value.");
     546         588 :   keys.add("optional","FA_MIN_ACCELERATION","only update the hill addition pace in frequency adaptive metadynamics after reaching the minimum acceleration factor given here. By default it is 1.0.");
     547         294 :   keys.use("RESTART");
     548         294 :   keys.use("UPDATE_FROM");
     549         294 :   keys.use("UPDATE_UNTIL");
     550         147 : }
     551             : 
     552        5874 : const std::string MetaD::tempering_names_[1][2] = {{"TT", "transition tempered"}};
     553             : 
     554         147 : void MetaD::registerTemperingKeywords(const std::string &name_stem, const std::string &name, Keywords &keys) {
     555         882 :   keys.add("optional", name_stem + "BIASFACTOR", "use " + name + " metadynamics with this bias factor.  Please note you must also specify temp");
     556        1176 :   keys.add("optional", name_stem + "BIASTHRESHOLD", "use " + name + " metadynamics with this bias threshold.  Please note you must also specify " + name_stem + "BIASFACTOR");
     557        1176 :   keys.add("optional", name_stem + "ALPHA", "use " + name + " metadynamics with this hill size decay exponent parameter.  Please note you must also specify " + name_stem + "BIASFACTOR");
     558         147 : }
     559             : 
     560         146 : MetaD::MetaD(const ActionOptions& ao):
     561             :   PLUMED_BIAS_INIT(ao),
     562             : // Grid stuff initialization
     563             :   wgridstride_(0), grid_(false),
     564             : // Metadynamics basic parameters
     565             :   height0_(std::numeric_limits<double>::max()), biasf_(-1.0), dampfactor_(0.0),
     566             :   tt_specs_(false, "TT", "Transition Tempered", -1.0, 0.0, 1.0),
     567             :   kbt_(0.0),
     568             :   stride_(0), welltemp_(false),
     569             : // frequency adaptive
     570             :   current_stride(0),
     571             :   freq_adaptive_(false),
     572             :   fa_update_frequency_(0),
     573             :   fa_max_stride_(0),
     574             :   fa_min_acceleration_(1.0),
     575             : // Other stuff
     576             :   adaptive_(FlexibleBin::none),
     577             : // Multiple walkers initialization
     578             :   mw_n_(1), mw_dir_(""), mw_id_(0), mw_rstride_(1),
     579             :   walkers_mpi(false), mpi_nw_(0), mpi_mw_(0),
     580             : // Flying Gaussian
     581             :   flying(false),
     582             :   acceleration(false), acc(0.0), acc_restart_mean_(0.0),
     583             :   calc_max_bias_(false), max_bias_(0.0),
     584             :   calc_transition_bias_(false), transition_bias_(0.0),
     585             : // Interval initialization
     586             :   uppI_(-1), lowI_(-1), doInt_(false),
     587             :   isFirstStep(true),
     588             :   calc_rct_(false),
     589             :   reweight_factor_(0.0),
     590             :   rct_ustride_(1),
     591             :   work_(0),
     592         901 :   last_step_warn_grid(0)
     593             : {
     594             :   // parse the flexible hills
     595             :   string adaptiveoption;
     596             :   adaptiveoption="NONE";
     597         296 :   parse("ADAPTIVE",adaptiveoption);
     598         145 :   if(adaptiveoption=="GEOM") {
     599          22 :     log.printf("  Uses Geometry-based hills width: sigma must be in distance units and only one sigma is needed\n");
     600          22 :     adaptive_=FlexibleBin::geometry;
     601         123 :   } else if(adaptiveoption=="DIFF") {
     602           3 :     log.printf("  Uses Diffusion-based hills width: sigma must be in time steps and only one sigma is needed\n");
     603           3 :     adaptive_=FlexibleBin::diffusion;
     604         120 :   } else if(adaptiveoption=="NONE") {
     605         119 :     adaptive_=FlexibleBin::none;
     606             :   } else {
     607           8 :     error("I do not know this type of adaptive scheme");
     608             :   }
     609             : 
     610         294 :   parse("FMT",fmt);
     611             : 
     612             :   // parse the sigma
     613         294 :   parseVector("SIGMA",sigma0_);
     614         144 :   if(adaptive_==FlexibleBin::none) {
     615             :     // if you use normal sigma you need one sigma per argument
     616         125 :     if( sigma0_.size()!=getNumberOfArguments() ) error("number of arguments does not match number of SIGMA parameters");
     617             :   } else {
     618             :     // if you use flexible hills you need one sigma
     619          25 :     if(sigma0_.size()!=1) {
     620           8 :       error("If you choose ADAPTIVE you need only one sigma according to your choice of type (GEOM/DIFF)");
     621             :     }
     622             :     // if adaptive then the number must be an integer
     623          24 :     if(adaptive_==FlexibleBin::diffusion) {
     624           3 :       if(int(sigma0_[0])-sigma0_[0]>1.e-9 || int(sigma0_[0])-sigma0_[0] <-1.e-9 || int(sigma0_[0])<1 ) {
     625           6 :         error("In case of adaptive hills with diffusion, the sigma must be an integer which is the number of time steps\n");
     626             :       }
     627             :     }
     628             :     // here evtl parse the sigma min and max values
     629          54 :     parseVector("SIGMA_MIN",sigma0min_);
     630          25 :     if(sigma0min_.size()>0 && sigma0min_.size()!=getNumberOfArguments()) {
     631           8 :       error("the number of SIGMA_MIN values be the same of the number of the arguments");
     632          23 :     } else if(sigma0min_.size()==0) {
     633          23 :       sigma0min_.resize(getNumberOfArguments());
     634         155 :       for(unsigned i=0; i<getNumberOfArguments(); i++) {sigma0min_[i]=-1.;}
     635             :     }
     636             : 
     637          52 :     parseVector("SIGMA_MAX",sigma0max_);
     638          24 :     if(sigma0max_.size()>0 && sigma0max_.size()!=getNumberOfArguments()) {
     639           8 :       error("the number of SIGMA_MAX values be the same of the number of the arguments");
     640          22 :     } else if(sigma0max_.size()==0) {
     641          22 :       sigma0max_.resize(getNumberOfArguments());
     642         148 :       for(unsigned i=0; i<getNumberOfArguments(); i++) {sigma0max_[i]=-1.;}
     643             :     }
     644             : 
     645          22 :     flexbin.reset(new FlexibleBin(adaptive_,this,sigma0_[0],sigma0min_,sigma0max_));
     646             :   }
     647             :   // note: HEIGHT is not compulsory, since one could use the TAU keyword, see below
     648         288 :   parse("HEIGHT",height0_);
     649         288 :   parse("PACE",stride_);
     650         146 :   if(stride_<=0 ) error("frequency for hill addition is nonsensical");
     651         140 :   current_stride = stride_;
     652         146 :   string hillsfname="HILLS";
     653         281 :   parse("FILE",hillsfname);
     654             : 
     655             :   // Manually set to calculate special bias quantities
     656             :   // throughout the course of simulation. (These are chosen due to
     657             :   // relevance for tempering and event-driven logic as well.)
     658         281 :   parseFlag("CALC_MAX_BIAS", calc_max_bias_);
     659         281 :   parseFlag("CALC_TRANSITION_BIAS", calc_transition_bias_);
     660             : 
     661             :   std::vector<double> rect_biasf_;
     662         281 :   parseVector("RECT",rect_biasf_);
     663         140 :   if(rect_biasf_.size()>0) {
     664          18 :     int r=0;
     665          18 :     if(comm.Get_rank()==0) r=multi_sim_comm.Get_rank();
     666          18 :     comm.Bcast(r,0);
     667          36 :     biasf_=rect_biasf_[r];
     668          18 :     log<<"  You are using RECT\n";
     669             :   } else {
     670         245 :     parse("BIASFACTOR",biasf_);
     671             :   }
     672         141 :   if( biasf_<1.0  && biasf_!=-1.0) error("well tempered bias factor is nonsensical");
     673         281 :   parse("DAMPFACTOR",dampfactor_);
     674         140 :   double temp=0.0;
     675         281 :   parse("TEMP",temp);
     676         190 :   if(temp>0.0) kbt_=plumed.getAtoms().getKBoltzmann()*temp;
     677         180 :   else kbt_=plumed.getAtoms().getKbT();
     678         140 :   if(biasf_>=1.0) {
     679          33 :     if(kbt_==0.0) error("Unless the MD engine passes the temperature to plumed, with well-tempered metad you must specify it using TEMP");
     680          32 :     welltemp_=true;
     681             :   }
     682         140 :   if(dampfactor_>0.0) {
     683           3 :     if(kbt_==0.0) error("Unless the MD engine passes the temperature to plumed, with damped metad you must specify it using TEMP");
     684             :   }
     685             : 
     686             :   // Set transition tempering parameters.
     687             :   // Transition wells are read later via calc_transition_bias_.
     688         140 :   readTemperingSpecs(tt_specs_);
     689         140 :   if (tt_specs_.is_active) calc_transition_bias_ = true;
     690             : 
     691             :   // If any previous option specified to calculate a transition bias,
     692             :   // now read the transition wells for that quantity.
     693         140 :   if (calc_transition_bias_) {
     694          14 :     vector<double> tempcoords(getNumberOfArguments());
     695          26 :     for (unsigned i = 0; ; i++) {
     696          78 :       if (!parseNumberedVector("TRANSITIONWELL", i, tempcoords) ) break;
     697          26 :       if (tempcoords.size() != getNumberOfArguments()) {
     698           0 :         error("incorrect number of coordinates for transition tempering well");
     699             :       }
     700          26 :       transitionwells_.push_back(tempcoords);
     701          26 :     }
     702             :   }
     703             : 
     704         281 :   parse("TARGET",targetfilename_);
     705         141 :   if(targetfilename_.length()>0 && kbt_==0.0)  error("with TARGET temperature must be specified");
     706         140 :   double tau=0.0;
     707         281 :   parse("TAU",tau);
     708         140 :   if(tau==0.0) {
     709         119 :     if(height0_==std::numeric_limits<double>::max()) error("At least one between HEIGHT and TAU should be specified");
     710             :     // if tau is not set, we compute it here from the other input parameters
     711         118 :     if(welltemp_) tau=(kbt_*(biasf_-1.0))/height0_*getTimeStep()*stride_;
     712         105 :     else if(dampfactor_>0.0) tau=(kbt_*dampfactor_)/height0_*getTimeStep()*stride_;
     713             :   } else {
     714          23 :     if(height0_!=std::numeric_limits<double>::max()) error("At most one between HEIGHT and TAU should be specified");
     715          22 :     if(welltemp_) {
     716          19 :       if(biasf_!=1.0) height0_=(kbt_*(biasf_-1.0))/tau*getTimeStep()*stride_;
     717           4 :       else           height0_=kbt_/tau*getTimeStep()*stride_; // special case for gamma=1
     718             :     }
     719           3 :     else if(dampfactor_>0.0) height0_=(kbt_*dampfactor_)/tau*getTimeStep()*stride_;
     720           3 :     else error("TAU only makes sense in well-tempered or damped metadynamics");
     721             :   }
     722             : 
     723             :   // Grid Stuff
     724         278 :   vector<std::string> gmin(getNumberOfArguments());
     725         278 :   parseVector("GRID_MIN",gmin);
     726         139 :   if(gmin.size()!=getNumberOfArguments() && gmin.size()!=0) error("not enough values for GRID_MIN");
     727         278 :   vector<std::string> gmax(getNumberOfArguments());
     728         278 :   parseVector("GRID_MAX",gmax);
     729         139 :   if(gmax.size()!=getNumberOfArguments() && gmax.size()!=0) error("not enough values for GRID_MAX");
     730         139 :   vector<unsigned> gbin(getNumberOfArguments());
     731             :   vector<double>   gspacing;
     732         278 :   parseVector("GRID_BIN",gbin);
     733         139 :   if(gbin.size()!=getNumberOfArguments() && gbin.size()!=0) error("not enough values for GRID_BIN");
     734         278 :   parseVector("GRID_SPACING",gspacing);
     735         139 :   if(gspacing.size()!=getNumberOfArguments() && gspacing.size()!=0) error("not enough values for GRID_SPACING");
     736         139 :   if(gmin.size()!=gmax.size()) error("GRID_MAX and GRID_MIN should be either present or absent");
     737         141 :   if(gspacing.size()!=0 && gmin.size()==0) error("If GRID_SPACING is present also GRID_MIN should be present");
     738         189 :   if(gbin.size()!=0     && gmin.size()==0) error("If GRID_SPACING is present also GRID_MIN should be present");
     739         139 :   if(gmin.size()!=0) {
     740          54 :     if(gbin.size()==0 && gspacing.size()==0) {
     741           1 :       if(adaptive_==FlexibleBin::none) {
     742           1 :         log<<"  Binsize not specified, 1/5 of sigma will be be used\n";
     743           1 :         plumed_assert(sigma0_.size()==getNumberOfArguments());
     744           1 :         gspacing.resize(getNumberOfArguments());
     745           5 :         for(unsigned i=0; i<gspacing.size(); i++) gspacing[i]=0.2*sigma0_[i];
     746             :       } else {
     747             :         // with adaptive hills and grid a sigma min must be specified
     748           0 :         for(unsigned i=0; i<sigma0min_.size(); i++) if(sigma0min_[i]<=0) error("When using Adaptive Gaussians on a grid SIGMA_MIN must be specified");
     749           0 :         log<<"  Binsize not specified, 1/5 of sigma_min will be be used\n";
     750           0 :         gspacing.resize(getNumberOfArguments());
     751           0 :         for(unsigned i=0; i<gspacing.size(); i++) gspacing[i]=0.2*sigma0min_[i];
     752             :       }
     753          51 :     } else if(gspacing.size()!=0 && gbin.size()==0) {
     754           1 :       log<<"  The number of bins will be estimated from GRID_SPACING\n";
     755          50 :     } else if(gspacing.size()!=0 && gbin.size()!=0) {
     756           1 :       log<<"  You specified both GRID_BIN and GRID_SPACING\n";
     757           1 :       log<<"  The more conservative (highest) number of bins will be used for each variable\n";
     758             :     }
     759          56 :     if(gbin.size()==0) gbin.assign(getNumberOfArguments(),1);
     760          67 :     if(gspacing.size()!=0) for(unsigned i=0; i<getNumberOfArguments(); i++) {
     761             :         double a,b;
     762          12 :         Tools::convert(gmin[i],a);
     763           6 :         Tools::convert(gmax[i],b);
     764          12 :         unsigned n=((b-a)/gspacing[i])+1;
     765           6 :         if(gbin[i]<n) gbin[i]=n;
     766             :       }
     767             :   }
     768         139 :   bool sparsegrid=false;
     769         278 :   parseFlag("GRID_SPARSE",sparsegrid);
     770         139 :   bool nospline=false;
     771         278 :   parseFlag("GRID_NOSPLINE",nospline);
     772         139 :   bool spline=!nospline;
     773         139 :   if(gbin.size()>0) {grid_=true;}
     774         278 :   parse("GRID_WSTRIDE",wgridstride_);
     775             :   string gridfilename_;
     776         278 :   parse("GRID_WFILE",gridfilename_);
     777         278 :   parseFlag("STORE_GRIDS",storeOldGrids_);
     778         191 :   if(grid_ && gridfilename_.length()>0) {
     779          16 :     if(wgridstride_==0 ) error("frequency with which to output grid not specified use GRID_WSTRIDE");
     780             :   }
     781             : 
     782         139 :   if(grid_ && wgridstride_>0) {
     783          16 :     if(gridfilename_.length()==0) error("grid filename not specified use GRID_WFILE");
     784             :   }
     785             :   string gridreadfilename_;
     786         278 :   parse("GRID_RFILE",gridreadfilename_);
     787             : 
     788         226 :   if(!grid_&&gridfilename_.length()> 0) error("To write a grid you need first to define it!");
     789         226 :   if(!grid_&&gridreadfilename_.length()>0) error("To read a grid you need first to define it!");
     790             : 
     791             :   // Reweighting factor rct
     792         278 :   parseFlag("CALC_RCT",calc_rct_);
     793         139 :   if (calc_rct_)
     794           5 :     plumed_massert(grid_,"CALC_RCT is supported only if bias is on a grid");
     795         278 :   parse("RCT_USTRIDE",rct_ustride_);
     796             : 
     797         139 :   if(dampfactor_>0.0) {
     798           2 :     if(!grid_) error("With DAMPFACTOR you should use grids");
     799             :   }
     800             : 
     801             :   // Multiple walkers
     802         278 :   parse("WALKERS_N",mw_n_);
     803         278 :   parse("WALKERS_ID",mw_id_);
     804         139 :   if(mw_n_<=mw_id_) error("walker ID should be a numerical value less than the total number of walkers");
     805         278 :   parse("WALKERS_DIR",mw_dir_);
     806         278 :   parse("WALKERS_RSTRIDE",mw_rstride_);
     807             : 
     808             :   // MPI version
     809         278 :   parseFlag("WALKERS_MPI",walkers_mpi);
     810             : 
     811             :   // Flying Gaussian
     812         278 :   parseFlag("FLYING_GAUSSIAN", flying);
     813             : 
     814             :   // Inteval keyword
     815         139 :   vector<double> tmpI(2);
     816         278 :   parseVector("INTERVAL",tmpI);
     817         139 :   if(tmpI.size()!=2&&tmpI.size()!=0) error("both a lower and an upper limits must be provided with INTERVAL");
     818         139 :   else if(tmpI.size()==2) {
     819           2 :     lowI_=tmpI.at(0);
     820           2 :     uppI_=tmpI.at(1);
     821           2 :     if(getNumberOfArguments()!=1) error("INTERVAL limits correction works only for monodimensional metadynamics!");
     822           2 :     if(uppI_<lowI_) error("The Upper limit must be greater than the Lower limit!");
     823           2 :     if(getPntrToArgument(0)->isPeriodic()) error("INTERVAL cannot be used with periodic variables!");
     824           2 :     doInt_=true;
     825             :   }
     826             : 
     827         139 :   acceleration=false;
     828         278 :   parseFlag("ACCELERATION",acceleration);
     829             :   // Check for a restart acceleration if acceleration is active.
     830             :   string acc_rfilename;
     831         139 :   if (acceleration) {
     832           8 :     parse("ACCELERATION_RFILE", acc_rfilename);
     833             :   }
     834             : 
     835         139 :   freq_adaptive_=false;
     836         278 :   parseFlag("FREQUENCY_ADAPTIVE",freq_adaptive_);
     837             :   //
     838         139 :   fa_update_frequency_=0;
     839         278 :   parse("FA_UPDATE_FREQUENCY",fa_update_frequency_);
     840         139 :   if(fa_update_frequency_!=0 && !freq_adaptive_) {
     841           0 :     plumed_merror("It doesn't make sense to use the FA_MAX_PACE keyword if frequency adaptive MetaD hasn't been activated by using the FREQUENCY_ADAPTIVE flag");
     842             :   }
     843         139 :   if(fa_update_frequency_==0 && freq_adaptive_) {
     844           0 :     fa_update_frequency_=stride_;
     845             :   }
     846             :   //
     847         139 :   fa_max_stride_=0;
     848         278 :   parse("FA_MAX_PACE",fa_max_stride_);
     849         139 :   if(fa_max_stride_!=0 && !freq_adaptive_) {
     850           0 :     plumed_merror("It doesn't make sense to use the FA_MAX_PACE keyword if frequency adaptive MetaD hasn't been activated by using the FREQUENCY_ADAPTIVE flag");
     851             :   }
     852             :   //
     853         139 :   fa_min_acceleration_=1.0;
     854         278 :   parse("FA_MIN_ACCELERATION",fa_min_acceleration_);
     855         139 :   if(fa_min_acceleration_!=1.0 && !freq_adaptive_) {
     856           0 :     plumed_merror("It doesn't make sense to use the FA_MIN_ACCELERATION keyword if frequency adaptive MetaD hasn't been activated by using the FREQUENCY_ADAPTIVE flag");
     857             :   }
     858             : 
     859         139 :   checkRead();
     860             : 
     861         139 :   log.printf("  Gaussian width ");
     862         139 :   if (adaptive_==FlexibleBin::diffusion)log.printf(" (Note: The units of sigma are in timesteps) ");
     863         139 :   if (adaptive_==FlexibleBin::geometry)log.printf(" (Note: The units of sigma are in dist units) ");
     864         607 :   for(unsigned i=0; i<sigma0_.size(); ++i) log.printf(" %f",sigma0_[i]);
     865         139 :   log.printf("  Gaussian height %f\n",height0_);
     866         139 :   log.printf("  Gaussian deposition pace %d\n",stride_);
     867         139 :   log.printf("  Gaussian file %s\n",hillsfname.c_str());
     868         139 :   if(welltemp_) {
     869          32 :     log.printf("  Well-Tempered Bias Factor %f\n",biasf_);
     870          32 :     log.printf("  Hills relaxation time (tau) %f\n",tau);
     871          32 :     log.printf("  KbT %f\n",kbt_);
     872             :   }
     873             :   // Transition tempered metadynamics options
     874         139 :   if (tt_specs_.is_active) {
     875           3 :     logTemperingSpecs(tt_specs_);
     876             :     // Check that the appropriate transition bias quantity is calculated.
     877             :     // (Should never trip, given that the flag is automatically set.)
     878           3 :     if (!calc_transition_bias_) {
     879           0 :       error(" transition tempering requires calculation of a transition bias");
     880             :     }
     881             :   }
     882             : 
     883             :   // Overall tempering sanity check (this gets tricky when multiple are active).
     884             :   // When multiple temperings are active, it's fine to have one tempering attempt
     885             :   // to increase hill size with increasing bias, so long as the others can shrink
     886             :   // the hills faster than it increases their size in the long-time limit.
     887             :   // This set of checks ensures that the hill sizes eventually decay to zero as c(t)
     888             :   // diverges to infinity.
     889             :   // The alpha parameter allows hills to decay as 1/t^alpha instead of 1/t,
     890             :   // a slower decay, so as t -> infinity, only the temperings with the largest
     891             :   // alphas govern the final asymptotic decay. (Alpha helps prevent false convergence.)
     892         139 :   if (welltemp_ || dampfactor_ > 0.0 || tt_specs_.is_active) {
     893             :     // Determine the number of active temperings.
     894             :     int n_active = 0;
     895          37 :     if (welltemp_) n_active++;
     896          37 :     if (dampfactor_ > 0.0) n_active++;
     897          37 :     if (tt_specs_.is_active) n_active++;
     898             :     // Find the greatest alpha.
     899          37 :     double greatest_alpha = 0.0;
     900          37 :     if (welltemp_) greatest_alpha = max(greatest_alpha, 1.0);
     901          39 :     if (dampfactor_ > 0.0) greatest_alpha = max(greatest_alpha, 1.0);
     902          40 :     if (tt_specs_.is_active) greatest_alpha = max(greatest_alpha, tt_specs_.alpha);
     903             :     // Find the least alpha.
     904          37 :     double least_alpha = 1.0;
     905          37 :     if (welltemp_) least_alpha = min(least_alpha, 1.0);
     906          39 :     if (dampfactor_ > 0.0) least_alpha = min(least_alpha, 1.0);
     907          40 :     if (tt_specs_.is_active) least_alpha = min(least_alpha, tt_specs_.alpha);
     908             :     // Find the inverse harmonic average of the delta T parameters for all
     909             :     // of the temperings with the greatest alpha values.
     910             :     double total_governing_deltaT_inv = 0.0;
     911          37 :     if (welltemp_ && 1.0 == greatest_alpha && biasf_ != 1.0) total_governing_deltaT_inv += 1.0 / (biasf_ - 1.0);
     912          37 :     if (dampfactor_ > 0.0 && 1.0 == greatest_alpha) total_governing_deltaT_inv += 1.0 / (dampfactor_);
     913          37 :     if (tt_specs_.is_active && tt_specs_.alpha == greatest_alpha) total_governing_deltaT_inv += 1.0 / (tt_specs_.biasf - 1.0);
     914             :     // Give a newbie-friendly error message for people using one tempering if
     915             :     // only one is active.
     916          37 :     if (n_active == 1 && total_governing_deltaT_inv < 0.0) {
     917           0 :       error("for stable tempering, the bias factor must be greater than one");
     918             :       // Give a slightly more complex error message to users stacking multiple
     919             :       // tempering options at a time, but all with uniform alpha values.
     920          37 :     } else if (total_governing_deltaT_inv < 0.0 && greatest_alpha == least_alpha) {
     921           0 :       error("for stable tempering, the sum of the inverse Delta T parameters must be greater than zero!");
     922             :       // Give the most technical error message to users stacking multiple tempering
     923             :       // options with different alpha parameters.
     924          37 :     } else if (total_governing_deltaT_inv < 0.0 && greatest_alpha != least_alpha) {
     925           0 :       error("for stable tempering, the sum of the inverse Delta T parameters for the greatest asymptotic hill decay exponents must be greater than zero!");
     926             :     }
     927             :   }
     928             : 
     929         139 :   if(doInt_) log.printf("  Upper and Lower limits boundaries for the bias are activated at %f - %f\n", lowI_, uppI_);
     930         139 :   if(grid_) {
     931          52 :     log.printf("  Grid min");
     932         230 :     for(unsigned i=0; i<gmin.size(); ++i) log.printf(" %s",gmin[i].c_str() );
     933          52 :     log.printf("\n");
     934          52 :     log.printf("  Grid max");
     935         230 :     for(unsigned i=0; i<gmax.size(); ++i) log.printf(" %s",gmax[i].c_str() );
     936          52 :     log.printf("\n");
     937          52 :     log.printf("  Grid bin");
     938         230 :     for(unsigned i=0; i<gbin.size(); ++i) log.printf(" %u",gbin[i]);
     939          52 :     log.printf("\n");
     940          52 :     if(spline) {log.printf("  Grid uses spline interpolation\n");}
     941          52 :     if(sparsegrid) {log.printf("  Grid uses sparse grid\n");}
     942          68 :     if(wgridstride_>0) {log.printf("  Grid is written on file %s with stride %d\n",gridfilename_.c_str(),wgridstride_);}
     943             :   }
     944             : 
     945         139 :   if(mw_n_>1) {
     946           6 :     if(walkers_mpi) error("MPI version of multiple walkers is not compatible with filesystem version of multiple walkers");
     947           6 :     log.printf("  %d multiple walkers active\n",mw_n_);
     948           6 :     log.printf("  walker id %d\n",mw_id_);
     949           6 :     log.printf("  reading stride %d\n",mw_rstride_);
     950           9 :     if(mw_dir_!="")log.printf("  directory with hills files %s\n",mw_dir_.c_str());
     951             :   } else {
     952         133 :     if(walkers_mpi) {
     953          36 :       log.printf("  Multiple walkers active using MPI communnication\n");
     954          36 :       if(mw_dir_!="")log.printf("  directory with hills files %s\n",mw_dir_.c_str());
     955          36 :       if(comm.Get_rank()==0) {
     956             :         // Only root of group can communicate with other walkers
     957          21 :         mpi_nw_=multi_sim_comm.Get_size();
     958          21 :         mpi_mw_=multi_sim_comm.Get_rank();
     959             :       }
     960             :       // Communicate to the other members of the same group
     961             :       // info abount number of walkers and walker index
     962          36 :       comm.Bcast(mpi_nw_,0);
     963          36 :       comm.Bcast(mpi_mw_,0);
     964             :     }
     965             :   }
     966             : 
     967         139 :   if(flying) {
     968           6 :     if(!walkers_mpi) error("Flying Gaussian method must be used with MPI version of multiple walkers");
     969           6 :     log.printf("  Flying Gaussian method with %d walkers active\n",mpi_nw_);
     970             :   }
     971             : 
     972         139 :   if(calc_rct_) {
     973          15 :     addComponent("rbias"); componentIsNotPeriodic("rbias");
     974          15 :     addComponent("rct"); componentIsNotPeriodic("rct");
     975           5 :     log.printf("  The c(t) reweighting factor will be calculated every %u hills\n",rct_ustride_);
     976          10 :     getPntrToComponent("rct")->set(reweight_factor_);
     977             :   }
     978         417 :   addComponent("work"); componentIsNotPeriodic("work");
     979             : 
     980         139 :   if(acceleration) {
     981           4 :     if (kbt_ == 0.0) {
     982           0 :       error("The calculation of the acceleration works only if simulation temperature has been defined");
     983             :     }
     984           4 :     log.printf("  calculation on the fly of the acceleration factor\n");
     985          12 :     addComponent("acc"); componentIsNotPeriodic("acc");
     986             :     // Set the initial value of the the acceleration.
     987             :     // If this is not a restart, set to 1.0.
     988           4 :     if (acc_rfilename.length() == 0) {
     989           4 :       getPntrToComponent("acc")->set(1.0);
     990           2 :       if(getRestart()) {
     991           1 :         log.printf("  WARNING: calculating the acceleration factor in a restarted run without reading in the previous value will most likely lead to incorrect results. You should use the ACCELERATION_RFILE keyword.\n");
     992             :       }
     993             :       // Otherwise, read and set the restart value.
     994             :     } else {
     995             :       // Restart of acceleration does not make sense if the restart timestep is zero.
     996             :       //if (getStep() == 0) {
     997             :       //  error("Restarting calculation of acceleration factors works only if simulation timestep is restarted correctly");
     998             :       //}
     999             :       // Open the ACCELERATION_RFILE.
    1000           2 :       IFile acc_rfile;
    1001           2 :       acc_rfile.link(*this);
    1002           2 :       if(acc_rfile.FileExist(acc_rfilename)) {
    1003           2 :         acc_rfile.open(acc_rfilename);
    1004             :       } else {
    1005           0 :         error("The ACCELERATION_RFILE file you want to read: " + acc_rfilename + ", cannot be found!");
    1006             :       }
    1007             :       // Read the file to find the restart acceleration.
    1008             :       double acc_rmean;
    1009             :       double acc_rtime;
    1010           2 :       std::string acclabel = getLabel() + ".acc";
    1011           2 :       acc_rfile.allowIgnoredFields();
    1012         248 :       while(acc_rfile.scanField("time", acc_rtime)) {
    1013         122 :         acc_rfile.scanField(acclabel, acc_rmean);
    1014         122 :         acc_rfile.scanField();
    1015             :       }
    1016           2 :       acc_restart_mean_ = acc_rmean;
    1017             :       // Set component based on the read values.
    1018           4 :       getPntrToComponent("acc")->set(acc_rmean);
    1019           6 :       log.printf("  initial acceleration factor read from file %s: value of %f at time %f\n",acc_rfilename.c_str(),acc_rmean,acc_rtime);
    1020             :     }
    1021             :   }
    1022         139 :   if (calc_max_bias_) {
    1023           0 :     if (!grid_) error("Calculating the maximum bias on the fly works only with a grid");
    1024           0 :     log.printf("  calculation on the fly of the maximum bias max(V(s,t)) \n");
    1025           0 :     addComponent("maxbias");
    1026           0 :     componentIsNotPeriodic("maxbias");
    1027             :   }
    1028         139 :   if (calc_transition_bias_) {
    1029          13 :     if (!grid_) error("Calculating the transition bias on the fly works only with a grid");
    1030          13 :     log.printf("  calculation on the fly of the transition bias V*(t)\n");
    1031          26 :     addComponent("transbias");
    1032          26 :     componentIsNotPeriodic("transbias");
    1033          13 :     log<<"  Number of transition wells "<<transitionwells_.size()<<"\n";
    1034          13 :     if (transitionwells_.size() == 0) error("Calculating the transition bias on the fly requires definition of at least one transition well");
    1035             :     // Check that a grid is in use.
    1036          13 :     if (!grid_) error(" transition barrier finding requires a grid for the bias");
    1037             :     // Log the wells and check that they are in the grid.
    1038          65 :     for (unsigned i = 0; i < transitionwells_.size(); i++) {
    1039             :       // Log the coordinate.
    1040          26 :       log.printf("  Transition well %d at coordinate ", i);
    1041         140 :       for (unsigned j = 0; j < getNumberOfArguments(); j++) log.printf("%f ", transitionwells_[i][j]);
    1042          26 :       log.printf("\n");
    1043             :       // Check that the coordinate is in the grid.
    1044         102 :       for (unsigned j = 0; j < getNumberOfArguments(); j++) {
    1045             :         double max, min;
    1046          76 :         Tools::convert(gmin[j], min);
    1047          38 :         Tools::convert(gmax[j], max);
    1048          38 :         if (transitionwells_[i][j] < min || transitionwells_[i][j] > max) error(" transition well is not in grid");
    1049             :       }
    1050             :     }
    1051             :   }
    1052             : 
    1053         139 :   if(freq_adaptive_) {
    1054           2 :     if(!acceleration) {
    1055           0 :       plumed_merror("Frequency adaptive metadynamics only works if the calculation of the acceleration factor is enabled with the ACCELERATION keyword\n");
    1056             :     }
    1057           2 :     if(walkers_mpi) {
    1058           0 :       plumed_merror("Combining frequency adaptive metadynamics with MPI multiple walkers is not allowed");
    1059             :     }
    1060             : 
    1061           2 :     log.printf("  Frequency adaptive metadynamics enabled\n");
    1062           3 :     if(getRestart() && acc_rfilename.length() == 0) {
    1063           0 :       log.printf("  WARNING: using the frequency adaptive scheme in a restarted run without reading in the previous value of the acceleration factor will most likely lead to incorrect results. You should use the ACCELERATION_RFILE keyword.\n");
    1064             :     }
    1065           2 :     log.printf("  The frequency for hill addition will change dynamically based on the metadynamics acceleration factor\n");
    1066           2 :     log.printf("  The hill addition frequency will be updated every %d steps\n",fa_update_frequency_);
    1067           2 :     if(fa_min_acceleration_>1.0) {
    1068           2 :       log.printf("  The hill addition frequency will only be updated once the metadynamics acceleration factor becomes larger than %.1f \n",fa_min_acceleration_);
    1069             :     }
    1070           2 :     if(fa_max_stride_!=0) {
    1071           2 :       log.printf("  The hill addition frequency will not become larger than %d steps\n",fa_max_stride_);
    1072             :     }
    1073           6 :     addComponent("pace"); componentIsNotPeriodic("pace");
    1074           2 :     updateFrequencyAdaptiveStride();
    1075             :   }
    1076             : 
    1077             :   // for performance
    1078         139 :   dp_.reset( new double[getNumberOfArguments()] );
    1079             : 
    1080             :   // initializing and checking grid
    1081         139 :   if(grid_) {
    1082             :     // check for mesh and sigma size
    1083         230 :     for(unsigned i=0; i<getNumberOfArguments(); i++) {
    1084             :       double a,b;
    1085         178 :       Tools::convert(gmin[i],a);
    1086          89 :       Tools::convert(gmax[i],b);
    1087         178 :       double mesh=(b-a)/((double)gbin[i]);
    1088          89 :       if(adaptive_==FlexibleBin::none) {
    1089          89 :         if(mesh>0.5*sigma0_[i]) log<<"  WARNING: Using a METAD with a Grid Spacing larger than half of the Gaussians width can produce artifacts\n";
    1090             :       } else {
    1091           0 :         if(mesh>0.5*sigma0min_[i]||sigma0min_[i]<0.) log<<"  WARNING: to use a METAD with a GRID and ADAPTIVE you need to set a Grid Spacing larger than half of the Gaussians \n";
    1092             :       }
    1093             :     }
    1094          52 :     std::string funcl=getLabel() + ".bias";
    1095          52 :     if(!sparsegrid) {BiasGrid_.reset(new Grid(funcl,getArguments(),gmin,gmax,gbin,spline,true));}
    1096           6 :     else {BiasGrid_.reset(new SparseGrid(funcl,getArguments(),gmin,gmax,gbin,spline,true));}
    1097         104 :     std::vector<std::string> actualmin=BiasGrid_->getMin();
    1098         104 :     std::vector<std::string> actualmax=BiasGrid_->getMax();
    1099         230 :     for(unsigned i=0; i<getNumberOfArguments(); i++) {
    1100             :       std::string is;
    1101          89 :       Tools::convert(i,is);
    1102         178 :       if(gmin[i]!=actualmin[i]) error("GRID_MIN["+is+"] must be adjusted to "+actualmin[i]+" to fit periodicity");
    1103          89 :       if(gmax[i]!=actualmax[i]) error("GRID_MAX["+is+"] must be adjusted to "+actualmax[i]+" to fit periodicity");
    1104             :     }
    1105             :   }
    1106             : 
    1107             :   // restart from external grid
    1108             :   bool restartedFromGrid=false;
    1109         139 :   if(gridreadfilename_.length()>0) {
    1110             :     // read the grid in input, find the keys
    1111          18 :     IFile gridfile;
    1112          18 :     gridfile.link(*this);
    1113          18 :     if(gridfile.FileExist(gridreadfilename_)) {
    1114          18 :       gridfile.open(gridreadfilename_);
    1115             :     } else {
    1116           0 :       error("The GRID file you want to read: " + gridreadfilename_ + ", cannot be found!");
    1117             :     }
    1118          18 :     std::string funcl=getLabel() + ".bias";
    1119          36 :     BiasGrid_=GridBase::create(funcl, getArguments(), gridfile, gmin, gmax, gbin, sparsegrid, spline, true);
    1120          36 :     if(BiasGrid_->getDimension()!=getNumberOfArguments()) error("mismatch between dimensionality of input grid and number of arguments");
    1121          72 :     for(unsigned i=0; i<getNumberOfArguments(); ++i) {
    1122          81 :       if( getPntrToArgument(i)->isPeriodic()!=BiasGrid_->getIsPeriodic()[i] ) error("periodicity mismatch between arguments and input bias");
    1123             :       double a, b;
    1124          27 :       Tools::convert(gmin[i],a);
    1125          27 :       Tools::convert(gmax[i],b);
    1126          54 :       double mesh=(b-a)/((double)gbin[i]);
    1127          27 :       if(mesh>0.5*sigma0_[i]) log<<"  WARNING: Using a METAD with a Grid Spacing larger than half of the Gaussians width can produce artifacts\n";
    1128             :     }
    1129          18 :     log.printf("  Restarting from %s:",gridreadfilename_.c_str());
    1130          36 :     if(getRestart()) restartedFromGrid=true;
    1131             :   }
    1132             : 
    1133             :   // initializing and checking grid
    1134         191 :   if(grid_&&!(gridreadfilename_.length()>0)) {
    1135             :     // check for adaptive and sigma_min
    1136          34 :     if(sigma0min_.size()==0&&adaptive_!=FlexibleBin::none) error("When using Adaptive Gaussians on a grid SIGMA_MIN must be specified");
    1137             :     // check for mesh and sigma size
    1138         158 :     for(unsigned i=0; i<getNumberOfArguments(); i++) {
    1139             :       double a,b;
    1140         124 :       Tools::convert(gmin[i],a);
    1141          62 :       Tools::convert(gmax[i],b);
    1142         124 :       double mesh=(b-a)/((double)gbin[i]);
    1143          62 :       if(mesh>0.5*sigma0_[i]) log<<"  WARNING: Using a METAD with a Grid Spacing larger than half of the Gaussians width can produce artifacts\n";
    1144             :     }
    1145          34 :     std::string funcl=getLabel() + ".bias";
    1146          34 :     if(!sparsegrid) {BiasGrid_.reset(new Grid(funcl,getArguments(),gmin,gmax,gbin,spline,true));}
    1147           6 :     else {BiasGrid_.reset(new SparseGrid(funcl,getArguments(),gmin,gmax,gbin,spline,true));}
    1148          68 :     std::vector<std::string> actualmin=BiasGrid_->getMin();
    1149          68 :     std::vector<std::string> actualmax=BiasGrid_->getMax();
    1150         192 :     for(unsigned i=0; i<getNumberOfArguments(); i++) {
    1151         124 :       if(gmin[i]!=actualmin[i]) log<<"  WARNING: GRID_MIN["<<i<<"] has been adjusted to "<<actualmin[i]<<" to fit periodicity\n";
    1152         124 :       if(gmax[i]!=actualmax[i]) log<<"  WARNING: GRID_MAX["<<i<<"] has been adjusted to "<<actualmax[i]<<" to fit periodicity\n";
    1153             :     }
    1154             :   }
    1155             : 
    1156             :   // creating vector of ifile* for hills reading
    1157             :   // open all files at the beginning and read Gaussians if restarting
    1158         151 :   for(int i=0; i<mw_n_; ++i) {
    1159             :     string fname;
    1160         151 :     if(mw_dir_!="") {
    1161           9 :       if(mw_n_>1) {
    1162           9 :         stringstream out; out << i;
    1163          63 :         fname = mw_dir_+"/"+hillsfname+"."+out.str();
    1164           0 :       } else if(walkers_mpi) {
    1165           0 :         fname = mw_dir_+"/"+hillsfname;
    1166             :       } else {
    1167             :         fname = hillsfname;
    1168             :       }
    1169             :     } else {
    1170         142 :       if(mw_n_>1) {
    1171           9 :         stringstream out; out << i;
    1172          36 :         fname = hillsfname+"."+out.str();
    1173             :       } else {
    1174             :         fname = hillsfname;
    1175             :       }
    1176             :     }
    1177         151 :     ifiles.emplace_back(new IFile());
    1178             :     // this is just a shortcut pointer to the last element:
    1179             :     IFile *ifile = ifiles.back().get();
    1180         151 :     ifilesnames.push_back(fname);
    1181         151 :     ifile->link(*this);
    1182         151 :     if(ifile->FileExist(fname)) {
    1183          35 :       ifile->open(fname);
    1184          35 :       if(getRestart()&&!restartedFromGrid) {
    1185          36 :         log.printf("  Restarting from %s:",ifilesnames[i].c_str());
    1186          18 :         readGaussians(ifiles[i].get());
    1187             :       }
    1188          70 :       ifiles[i]->reset(false);
    1189             :       // close only the walker own hills file for later writing
    1190          64 :       if(i==mw_id_) ifiles[i]->close();
    1191             :     } else {
    1192             :       // in case a file does not exist and we are restarting, complain that the file was not found
    1193         116 :       if(getRestart()) log<<"  WARNING: restart file "<<fname<<" not found\n";
    1194             :     }
    1195             :   }
    1196             : 
    1197         139 :   comm.Barrier();
    1198             :   // this barrier is needed when using walkers_mpi
    1199             :   // to be sure that all files have been read before
    1200             :   // backing them up
    1201             :   // it should not be used when walkers_mpi is false otherwise
    1202             :   // it would introduce troubles when using replicas without METAD
    1203             :   // (e.g. in bias exchange with a neutral replica)
    1204             :   // see issue #168 on github
    1205         139 :   if(comm.Get_rank()==0 && walkers_mpi) multi_sim_comm.Barrier();
    1206         139 :   if(targetfilename_.length()>0) {
    1207           2 :     IFile gridfile; gridfile.open(targetfilename_);
    1208           2 :     std::string funcl=getLabel() + ".target";
    1209           4 :     TargetGrid_=GridBase::create(funcl,getArguments(),gridfile,false,false,true);
    1210           4 :     if(TargetGrid_->getDimension()!=getNumberOfArguments()) error("mismatch between dimensionality of input grid and number of arguments");
    1211           6 :     for(unsigned i=0; i<getNumberOfArguments(); ++i) {
    1212           6 :       if( getPntrToArgument(i)->isPeriodic()!=TargetGrid_->getIsPeriodic()[i] ) error("periodicity mismatch between arguments and input bias");
    1213           2 :     }
    1214             :   }
    1215             : 
    1216             :   // Calculate the Tiwary-Parrinello reweighting factor if we are restarting from previous hills
    1217         139 :   if(getRestart() && calc_rct_) computeReweightingFactor();
    1218             :   // Calculate all special bias quantities desired if restarting with nonzero bias.
    1219         139 :   if(getRestart() && calc_max_bias_) {
    1220           0 :     max_bias_ = BiasGrid_->getMaxValue();
    1221           0 :     getPntrToComponent("maxbias")->set(max_bias_);
    1222             :   }
    1223         139 :   if(getRestart() && calc_transition_bias_) {
    1224          13 :     transition_bias_ = getTransitionBarrierBias();
    1225          26 :     getPntrToComponent("transbias")->set(transition_bias_);
    1226             :   }
    1227             : 
    1228             :   // open grid file for writing
    1229         139 :   if(wgridstride_>0) {
    1230          16 :     gridfile_.link(*this);
    1231          16 :     if(walkers_mpi) {
    1232           0 :       int r=0;
    1233           0 :       if(comm.Get_rank()==0) r=multi_sim_comm.Get_rank();
    1234           0 :       comm.Bcast(r,0);
    1235           0 :       if(r>0) gridfilename_="/dev/null";
    1236           0 :       gridfile_.enforceSuffix("");
    1237             :     }
    1238          16 :     if(mw_n_>1) gridfile_.enforceSuffix("");
    1239          16 :     gridfile_.open(gridfilename_);
    1240             :   }
    1241             : 
    1242             :   // open hills file for writing
    1243         139 :   hillsOfile_.link(*this);
    1244         139 :   if(walkers_mpi) {
    1245          36 :     int r=0;
    1246          36 :     if(comm.Get_rank()==0) r=multi_sim_comm.Get_rank();
    1247          36 :     comm.Bcast(r,0);
    1248          36 :     if(r>0) ifilesnames[mw_id_]="/dev/null";
    1249          72 :     hillsOfile_.enforceSuffix("");
    1250             :   }
    1251         145 :   if(mw_n_>1) hillsOfile_.enforceSuffix("");
    1252         278 :   hillsOfile_.open(ifilesnames[mw_id_]);
    1253         139 :   if(fmt.length()>0) hillsOfile_.fmtField(fmt);
    1254         278 :   hillsOfile_.addConstantField("multivariate");
    1255         278 :   hillsOfile_.addConstantField("kerneltype");
    1256         139 :   if(doInt_) {
    1257           6 :     hillsOfile_.addConstantField("lower_int").printField("lower_int",lowI_);
    1258           6 :     hillsOfile_.addConstantField("upper_int").printField("upper_int",uppI_);
    1259             :   }
    1260             :   hillsOfile_.setHeavyFlush();
    1261             :   // output periodicities of variables
    1262         784 :   for(unsigned i=0; i<getNumberOfArguments(); ++i) hillsOfile_.setupPrintValue( getPntrToArgument(i) );
    1263             : 
    1264             :   bool concurrent=false;
    1265         139 :   const ActionSet&actionSet(plumed.getActionSet());
    1266        1082 :   for(const auto & p : actionSet) if(dynamic_cast<MetaD*>(p.get())) { concurrent=true; break; }
    1267         139 :   if(concurrent) log<<"  You are using concurrent metadynamics\n";
    1268         139 :   if(rect_biasf_.size()>0) {
    1269          18 :     if(walkers_mpi) {
    1270          12 :       log<<"  You are using RECT in its 'altruistic' implementation\n";
    1271             :     }{
    1272          18 :       log<<"  You are using RECT\n";
    1273             :     }
    1274             :   }
    1275             : 
    1276         417 :   log<<"  Bibliography "<<plumed.cite("Laio and Parrinello, PNAS 99, 12562 (2002)");
    1277         139 :   if(welltemp_) log<<plumed.cite(
    1278          96 :                        "Barducci, Bussi, and Parrinello, Phys. Rev. Lett. 100, 020603 (2008)");
    1279         139 :   if(tt_specs_.is_active) {
    1280           9 :     log << plumed.cite("Dama, Rotskoff, Parrinello, and Voth, J. Chem. Theory Comput. 10, 3626 (2014)");
    1281           9 :     log << plumed.cite("Dama, Parrinello, and Voth, Phys. Rev. Lett. 112, 240602 (2014)");
    1282             :   }
    1283         139 :   if(mw_n_>1||walkers_mpi) log<<plumed.cite(
    1284         126 :                                   "Raiteri, Laio, Gervasio, Micheletti, and Parrinello, J. Phys. Chem. B 110, 3533 (2006)");
    1285         139 :   if(adaptive_!=FlexibleBin::none) log<<plumed.cite(
    1286          63 :                                           "Branduardi, Bussi, and Parrinello, J. Chem. Theory Comput. 8, 2247 (2012)");
    1287         139 :   if(doInt_) log<<plumed.cite(
    1288           6 :                     "Baftizadeh, Cossio, Pietrucci, and Laio, Curr. Phys. Chem. 2, 79 (2012)");
    1289         139 :   if(acceleration) log<<plumed.cite(
    1290          12 :                           "Pratyush and Parrinello, Phys. Rev. Lett. 111, 230602 (2013)");
    1291         139 :   if(calc_rct_) log<<plumed.cite(
    1292          15 :                        "Pratyush and Parrinello, J. Phys. Chem. B, 119, 736 (2015)");
    1293         206 :   if(concurrent || rect_biasf_.size()>0) log<<plumed.cite(
    1294         234 :           "Gil-Ley and Bussi, J. Chem. Theory Comput. 11, 1077 (2015)");
    1295         139 :   if(rect_biasf_.size()>0 && walkers_mpi) log<<plumed.cite(
    1296          36 :           "Hosek, Toulcova, Bortolato, and Spiwok, J. Phys. Chem. B 120, 2209 (2016)");
    1297         139 :   if(targetfilename_.length()>0) {
    1298           6 :     log<<plumed.cite("White, Dama, and Voth, J. Chem. Theory Comput. 11, 2451 (2015)");
    1299           6 :     log<<plumed.cite("Marinelli and Faraldo-Gómez,  Biophys. J. 108, 2779 (2015)");
    1300           6 :     log<<plumed.cite("Gil-Ley, Bottaro, and Bussi, J. Chem. Theory Comput. 12, 2790 (2016)");
    1301             :   }
    1302         139 :   if(freq_adaptive_) {
    1303           6 :     log<<plumed.cite("Wang, Valsson, Tiwary, Parrinello, and Lindorff-Larsen, J. Chem. Phys. 149, 072309 (2018)");
    1304             :   }
    1305         139 :   log<<"\n";
    1306         139 : }
    1307             : 
    1308         140 : void MetaD::readTemperingSpecs(TemperingSpecs &t_specs) {
    1309             :   // Set global tempering parameters.
    1310         280 :   parse(t_specs.name_stem + "BIASFACTOR", t_specs.biasf);
    1311         140 :   if (t_specs.biasf != -1.0) {
    1312           3 :     if (kbt_ == 0.0) {
    1313           0 :       error("Unless the MD engine passes the temperature to plumed, with tempered metad you must specify it using TEMP");
    1314             :     }
    1315           3 :     if (t_specs.biasf == 1.0) {
    1316           0 :       error("A bias factor of 1 corresponds to zero delta T and zero hill size, so it is not allowed.");
    1317             :     }
    1318           3 :     t_specs.is_active = true;
    1319           6 :     parse(t_specs.name_stem + "BIASTHRESHOLD", t_specs.threshold);
    1320           3 :     if (t_specs.threshold < 0.0) {
    1321           0 :       error(t_specs.name + " bias threshold is nonsensical");
    1322             :     }
    1323           6 :     parse(t_specs.name_stem + "ALPHA", t_specs.alpha);
    1324           3 :     if (t_specs.alpha <= 0.0 || t_specs.alpha > 1.0) {
    1325           0 :       error(t_specs.name + " decay shape parameter alpha is nonsensical");
    1326             :     }
    1327             :   }
    1328         140 : }
    1329             : 
    1330           3 : void MetaD::logTemperingSpecs(const TemperingSpecs &t_specs) {
    1331           6 :   log.printf("  %s bias factor %f\n", t_specs.name.c_str(), t_specs.biasf);
    1332           3 :   log.printf("  KbT %f\n", kbt_);
    1333           5 :   if (t_specs.threshold != 0.0) log.printf("  %s bias threshold %f\n", t_specs.name.c_str(), t_specs.threshold);
    1334           4 :   if (t_specs.alpha != 1.0) log.printf("  %s decay shape parameter alpha %f\n", t_specs.name.c_str(), t_specs.alpha);
    1335           3 : }
    1336             : 
    1337        6036 : void MetaD::readGaussians(IFile *ifile)
    1338             : {
    1339        6036 :   unsigned ncv=getNumberOfArguments();
    1340        6036 :   vector<double> center(ncv);
    1341        6036 :   vector<double> sigma(ncv);
    1342             :   double height;
    1343             :   int nhills=0;
    1344        6036 :   bool multivariate=false;
    1345             : 
    1346        6036 :   std::vector<Value> tmpvalues;
    1347       30206 :   for(unsigned j=0; j<getNumberOfArguments(); ++j) tmpvalues.push_back( Value( this, getPntrToArgument(j)->getName(), false ) );
    1348             : 
    1349        8259 :   while(scanOneHill(ifile,tmpvalues,center,sigma,height,multivariate)) {
    1350             :     ;
    1351        2223 :     nhills++;
    1352             : // note that for gamma=1 we store directly -F
    1353        2223 :     if(welltemp_ && biasf_>1.0) {height*=(biasf_-1.0)/biasf_;}
    1354        2223 :     addGaussian(Gaussian(center,sigma,height,multivariate));
    1355             :   }
    1356        6036 :   log.printf("      %d Gaussians read\n",nhills);
    1357        6036 : }
    1358             : 
    1359        2906 : void MetaD::writeGaussian(const Gaussian& hill, OFile&file)
    1360             : {
    1361        2906 :   unsigned ncv=getNumberOfArguments();
    1362        5812 :   file.printField("time",getTimeStep()*getStep());
    1363        8146 :   for(unsigned i=0; i<ncv; ++i) {
    1364       10480 :     file.printField(getPntrToArgument(i),hill.center[i]);
    1365             :   }
    1366        8718 :   hillsOfile_.printField("kerneltype","gaussian");
    1367        2906 :   if(hill.multivariate) {
    1368        1338 :     hillsOfile_.printField("multivariate","true");
    1369             :     Matrix<double> mymatrix(ncv,ncv);
    1370             :     unsigned k=0;
    1371        1047 :     for(unsigned i=0; i<ncv; i++) {
    1372         756 :       for(unsigned j=i; j<ncv; j++) {
    1373             :         // recompose the full inverse matrix
    1374        1512 :         mymatrix(i,j)=mymatrix(j,i)=hill.sigma[k];
    1375         756 :         k++;
    1376             :       }
    1377             :     }
    1378             :     // invert it
    1379             :     Matrix<double> invmatrix(ncv,ncv);
    1380         446 :     Invert(mymatrix,invmatrix);
    1381             :     // enforce symmetry
    1382         601 :     for(unsigned i=0; i<ncv; i++) {
    1383         756 :       for(unsigned j=i; j<ncv; j++) {
    1384         756 :         invmatrix(i,j)=invmatrix(j,i);
    1385             :       }
    1386             :     }
    1387             : 
    1388             :     // do cholesky so to have a "sigma like" number
    1389             :     Matrix<double> lower(ncv,ncv);
    1390         446 :     cholesky(invmatrix,lower);
    1391             :     // loop in band form
    1392         601 :     for(unsigned i=0; i<ncv; i++) {
    1393         756 :       for(unsigned j=0; j<ncv-i; j++) {
    1394        6048 :         file.printField("sigma_"+getPntrToArgument(j+i)->getName()+"_"+getPntrToArgument(j)->getName(),lower(j+i,j));
    1395             :       }
    1396             :     }
    1397             :   } else {
    1398        7380 :     hillsOfile_.printField("multivariate","false");
    1399        7099 :     for(unsigned i=0; i<ncv; ++i)
    1400       18556 :       file.printField("sigma_"+getPntrToArgument(i)->getName(),hill.sigma[i]);
    1401             :   }
    1402        2906 :   double height=hill.height;
    1403             : // note that for gamma=1 we store directly -F
    1404        2906 :   if(welltemp_ && biasf_>1.0) height*=biasf_/(biasf_-1.0);
    1405        8718 :   file.printField("height",height).printField("biasf",biasf_);
    1406        4415 :   if(mw_n_>1) file.printField("clock",int(std::time(0)));
    1407        2906 :   file.printField();
    1408        2906 : }
    1409             : 
    1410        5291 : void MetaD::addGaussian(const Gaussian& hill)
    1411             : {
    1412        5291 :   if(!grid_) hills_.push_back(hill);
    1413             :   else {
    1414         626 :     unsigned ncv=getNumberOfArguments();
    1415         626 :     vector<unsigned> nneighb=getGaussianSupport(hill);
    1416        1252 :     vector<Grid::index_t> neighbors=BiasGrid_->getNeighbors(hill.center,nneighb);
    1417         626 :     vector<double> der(ncv);
    1418         626 :     vector<double> xx(ncv);
    1419         626 :     if(comm.Get_size()==1) {
    1420      109510 :       for(unsigned i=0; i<neighbors.size(); ++i) {
    1421       54486 :         Grid::index_t ineigh=neighbors[i];
    1422      158040 :         for(unsigned j=0; j<ncv; ++j) der[j]=0.0;
    1423       54486 :         BiasGrid_->getPoint(ineigh,xx);
    1424       54486 :         double bias=evaluateGaussian(xx,hill,&der[0]);
    1425       54486 :         BiasGrid_->addValueAndDerivatives(ineigh,bias,der);
    1426             :       }
    1427             :     } else {
    1428          88 :       unsigned stride=comm.Get_size();
    1429          88 :       unsigned rank=comm.Get_rank();
    1430         176 :       vector<double> allder(ncv*neighbors.size(),0.0);
    1431         176 :       vector<double> allbias(neighbors.size(),0.0);
    1432       54208 :       for(unsigned i=rank; i<neighbors.size(); i+=stride) {
    1433       27016 :         Grid::index_t ineigh=neighbors[i];
    1434       27016 :         BiasGrid_->getPoint(ineigh,xx);
    1435       54032 :         allbias[i]=evaluateGaussian(xx,hill,&allder[ncv*i]);
    1436             :       }
    1437          88 :       comm.Sum(allbias);
    1438          88 :       comm.Sum(allder);
    1439      206152 :       for(unsigned i=0; i<neighbors.size(); ++i) {
    1440      103032 :         Grid::index_t ineigh=neighbors[i];
    1441      515160 :         for(unsigned j=0; j<ncv; ++j) {der[j]=allder[ncv*i+j];}
    1442      206064 :         BiasGrid_->addValueAndDerivatives(ineigh,allbias[i],der);
    1443             :       }
    1444             :     }
    1445             :   }
    1446        5291 : }
    1447             : 
    1448         626 : vector<unsigned> MetaD::getGaussianSupport(const Gaussian& hill)
    1449             : {
    1450             :   vector<unsigned> nneigh;
    1451             :   vector<double> cutoff;
    1452         626 :   unsigned ncv=getNumberOfArguments();
    1453             : 
    1454             :   // traditional or flexible hill?
    1455         626 :   if(hill.multivariate) {
    1456             :     unsigned k=0;
    1457             :     Matrix<double> mymatrix(ncv,ncv);
    1458           0 :     for(unsigned i=0; i<ncv; i++) {
    1459           0 :       for(unsigned j=i; j<ncv; j++) {
    1460             :         // recompose the full inverse matrix
    1461           0 :         mymatrix(i,j)=mymatrix(j,i)=hill.sigma[k];
    1462           0 :         k++;
    1463             :       }
    1464             :     }
    1465             :     // Reinvert so to have the ellipses
    1466             :     Matrix<double> myinv(ncv,ncv);
    1467           0 :     Invert(mymatrix,myinv);
    1468             :     Matrix<double> myautovec(ncv,ncv);
    1469           0 :     vector<double> myautoval(ncv); //should I take this or their square root?
    1470           0 :     diagMat(myinv,myautoval,myautovec);
    1471             :     double maxautoval=0.;
    1472             :     unsigned ind_maxautoval; ind_maxautoval=ncv;
    1473           0 :     for(unsigned i=0; i<ncv; i++) {
    1474           0 :       if(myautoval[i]>maxautoval) {maxautoval=myautoval[i]; ind_maxautoval=i;}
    1475             :     }
    1476           0 :     for(unsigned i=0; i<ncv; i++) {
    1477           0 :       cutoff.push_back(sqrt(2.0*DP2CUTOFF)*abs(sqrt(maxautoval)*myautovec(i,ind_maxautoval)));
    1478             :     }
    1479             :   } else {
    1480         950 :     for(unsigned i=0; i<ncv; ++i) {
    1481        2850 :       cutoff.push_back(sqrt(2.0*DP2CUTOFF)*hill.sigma[i]);
    1482             :     }
    1483             :   }
    1484             : 
    1485         626 :   if(doInt_) {
    1486           4 :     if(hill.center[0]+cutoff[0] > uppI_ || hill.center[0]-cutoff[0] < lowI_) {
    1487             :       // in this case, we updated the entire grid to avoid problems
    1488           2 :       return BiasGrid_->getNbin();
    1489             :     } else {
    1490           0 :       nneigh.push_back( static_cast<unsigned>(ceil(cutoff[0]/BiasGrid_->getDx()[0])) );
    1491             :       return nneigh;
    1492             :     }
    1493             :   } else {
    1494         948 :     for(unsigned i=0; i<ncv; i++) {
    1495        5688 :       nneigh.push_back( static_cast<unsigned>(ceil(cutoff[i]/BiasGrid_->getDx()[i])) );
    1496             :     }
    1497             :   }
    1498             : 
    1499             :   return nneigh;
    1500             : }
    1501             : 
    1502       20717 : double MetaD::getBiasAndDerivatives(const vector<double>& cv, double* der)
    1503             : {
    1504       20717 :   double bias=0.0;
    1505       20717 :   if(!grid_) {
    1506       16452 :     if(hills_.size()>10000 && (getStep()-last_step_warn_grid)>10000) {
    1507             :       std::string msg;
    1508           0 :       Tools::convert(hills_.size(),msg);
    1509           0 :       msg="You have accumulated "+msg+" hills, you should enable GRIDs to avoid serious performance hits";
    1510           0 :       warning(msg);
    1511           0 :       last_step_warn_grid=getStep();
    1512             :     }
    1513       16452 :     unsigned stride=comm.Get_size();
    1514       16452 :     unsigned rank=comm.Get_rank();
    1515    13960910 :     for(unsigned i=rank; i<hills_.size(); i+=stride) {
    1516     6964003 :       bias+=evaluateGaussian(cv,hills_[i],der);
    1517             :     }
    1518       16452 :     comm.Sum(bias);
    1519       16452 :     if(der) comm.Sum(der,getNumberOfArguments());
    1520             :   } else {
    1521        4265 :     if(der) {
    1522        1356 :       vector<double> vder(getNumberOfArguments());
    1523        1356 :       bias=BiasGrid_->getValueAndDerivatives(cv,vder);
    1524        3168 :       for(unsigned i=0; i<getNumberOfArguments(); ++i) {der[i]=vder[i];}
    1525             :     } else {
    1526        2909 :       bias = BiasGrid_->getValue(cv);
    1527             :     }
    1528             :   }
    1529             : 
    1530       20717 :   return bias;
    1531             : }
    1532             : 
    1533           0 : double MetaD::getGaussianNormalization( const Gaussian& hill )
    1534             : {
    1535             :   double norm=1;
    1536           0 :   unsigned ncv=hill.center.size();
    1537             : 
    1538           0 :   if(hill.multivariate) {
    1539             :     // recompose the full sigma from the upper diag cholesky
    1540             :     unsigned k=0;
    1541             :     Matrix<double> mymatrix(ncv,ncv);
    1542           0 :     for(unsigned i=0; i<ncv; i++) {
    1543           0 :       for(unsigned j=i; j<ncv; j++) {
    1544           0 :         mymatrix(i,j)=mymatrix(j,i)=hill.sigma[k]; // recompose the full inverse matrix
    1545           0 :         k++;
    1546             :       }
    1547           0 :       double ldet; logdet( mymatrix, ldet );
    1548           0 :       norm = exp( ldet );  // Not sure here if mymatrix is sigma or inverse
    1549             :     }
    1550             :   } else {
    1551           0 :     for(unsigned i=0; i<hill.sigma.size(); ++i) norm*=hill.sigma[i];
    1552             :   }
    1553             : 
    1554           0 :   return norm*pow(2*pi,static_cast<double>(ncv)/2.0);
    1555             : }
    1556             : 
    1557     7045505 : double MetaD::evaluateGaussian(const vector<double>& cv, const Gaussian& hill, double* der)
    1558             : {
    1559             :   double dp2=0.0;
    1560             :   double bias=0.0;
    1561             :   // I use a pointer here because cv is const (and should be const)
    1562             :   // but when using doInt it is easier to locally replace cv[0] with
    1563             :   // the upper/lower limit in case it is out of range
    1564             :   const double *pcv=NULL; // pointer to cv
    1565             :   double tmpcv[1]; // tmp array with cv (to be used with doInt_)
    1566     7045505 :   if(cv.size()>0) pcv=&cv[0];
    1567     7045505 :   if(doInt_) {
    1568        1402 :     plumed_assert(cv.size()==1);
    1569        1402 :     tmpcv[0]=cv[0];
    1570        1402 :     if(cv[0]<lowI_) tmpcv[0]=lowI_;
    1571        1402 :     if(cv[0]>uppI_) tmpcv[0]=uppI_;
    1572             :     pcv=&(tmpcv[0]);
    1573             :   }
    1574     7045505 :   if(hill.multivariate) {
    1575             :     unsigned k=0;
    1576      230564 :     unsigned ncv=cv.size();
    1577             :     // recompose the full sigma from the upper diag cholesky
    1578             :     Matrix<double> mymatrix(ncv,ncv);
    1579      462552 :     for(unsigned i=0; i<ncv; i++) {
    1580      233412 :       for(unsigned j=i; j<ncv; j++) {
    1581      466824 :         mymatrix(i,j)=mymatrix(j,i)=hill.sigma[k]; // recompose the full inverse matrix
    1582      233412 :         k++;
    1583             :       }
    1584             :     }
    1585      694540 :     for(unsigned i=0; i<cv.size(); ++i) {
    1586      463976 :       double dp_i=difference(i,hill.center[i],pcv[i]);
    1587      231988 :       dp_[i]=dp_i;
    1588      930800 :       for(unsigned j=i; j<cv.size(); ++j) {
    1589      233412 :         if(i==j) {
    1590      463976 :           dp2+=dp_i*dp_i*mymatrix(i,j)*0.5;
    1591             :         } else {
    1592        2848 :           double dp_j=difference(j,hill.center[j],pcv[j]);
    1593        2848 :           dp2+=dp_i*dp_j*mymatrix(i,j);
    1594             :         }
    1595             :       }
    1596             :     }
    1597      230564 :     if(dp2<DP2CUTOFF) {
    1598      221813 :       bias=hill.height*exp(-dp2);
    1599      221813 :       if(der) {
    1600      233663 :         for(unsigned i=0; i<cv.size(); ++i) {
    1601             :           double tmp=0.0;
    1602       78604 :           for(unsigned j=0; j<cv.size(); ++j) {
    1603      157208 :             tmp += dp_[j]*mymatrix(i,j)*bias;
    1604             :           }
    1605       77990 :           der[i]-=tmp;
    1606             :         }
    1607             :       }
    1608             :     }
    1609             :   } else {
    1610    34052045 :     for(unsigned i=0; i<cv.size(); ++i) {
    1611    40855656 :       double dp=difference(i,hill.center[i],pcv[i])*hill.invsigma[i];
    1612    13618552 :       dp2+=dp*dp;
    1613    13618552 :       dp_[i]=dp;
    1614             :     }
    1615     6814941 :     dp2*=0.5;
    1616     6814941 :     if(dp2<DP2CUTOFF) {
    1617     3950608 :       bias=hill.height*exp(-dp2);
    1618     3950608 :       if(der) {
    1619    12172209 :         for(unsigned i=0; i<cv.size(); ++i) {der[i]+=-bias*dp_[i]*hill.invsigma[i];}
    1620             :       }
    1621             :     }
    1622             :   }
    1623             : 
    1624     7045505 :   if(doInt_ && der) {
    1625        1558 :     if(cv[0]<lowI_ || cv[0]>uppI_) for(unsigned i=0; i<cv.size(); ++i) der[i]=0;
    1626             :   }
    1627             : 
    1628     7045505 :   return bias;
    1629             : }
    1630             : 
    1631        2720 : double MetaD::getHeight(const vector<double>& cv)
    1632             : {
    1633        2720 :   double height=height0_;
    1634        2720 :   if(welltemp_) {
    1635         269 :     double vbias = getBiasAndDerivatives(cv);
    1636         269 :     if(biasf_>1.0) {
    1637         253 :       height = height0_*exp(-vbias/(kbt_*(biasf_-1.0)));
    1638             :     } else {
    1639             :       // notice that if gamma=1 we store directly -F
    1640          16 :       height = height0_*exp(-vbias/kbt_);
    1641             :     }
    1642             :   }
    1643        2720 :   if(dampfactor_>0.0) {
    1644          18 :     plumed_assert(BiasGrid_);
    1645          18 :     double m=BiasGrid_->getMaxValue();
    1646          18 :     height*=exp(-m/(kbt_*(dampfactor_)));
    1647             :   }
    1648        2720 :   if (tt_specs_.is_active) {
    1649          60 :     double vbarrier = transition_bias_;
    1650          60 :     temperHeight(height, tt_specs_, vbarrier);
    1651             :   }
    1652        2720 :   if(TargetGrid_) {
    1653          36 :     double f=TargetGrid_->getValue(cv)-TargetGrid_->getMaxValue();
    1654          18 :     height*=exp(f/kbt_);
    1655             :   }
    1656        2720 :   return height;
    1657             : }
    1658             : 
    1659          60 : void MetaD::temperHeight(double &height, const TemperingSpecs &t_specs, const double tempering_bias) {
    1660          60 :   if (t_specs.alpha == 1.0) {
    1661          80 :     height *= exp(-max(0.0, tempering_bias - t_specs.threshold) / (kbt_ * (t_specs.biasf - 1.0)));
    1662             :   } else {
    1663          40 :     height *= pow(1 + (1 - t_specs.alpha) / t_specs.alpha * max(0.0, tempering_bias - t_specs.threshold) / (kbt_ * (t_specs.biasf - 1.0)), - t_specs.alpha / (1 - t_specs.alpha));
    1664             :   }
    1665          60 : }
    1666             : 
    1667        8280 : void MetaD::calculate()
    1668             : {
    1669             :   // this is because presently there is no way to properly pass information
    1670             :   // on adaptive hills (diff) after exchanges:
    1671        8280 :   if(adaptive_==FlexibleBin::diffusion && getExchangeStep()) error("ADAPTIVE=DIFF is not compatible with replica exchange");
    1672             : 
    1673        8280 :   const unsigned ncv=getNumberOfArguments();
    1674        8280 :   vector<double> cv(ncv);
    1675        8280 :   std::unique_ptr<double[]> der(new double[ncv]);
    1676       12457 :   for(unsigned i=0; i<ncv; ++i) {
    1677       24914 :     cv[i]=getArgument(i);
    1678       12457 :     der[i]=0.;
    1679             :   }
    1680        8280 :   double ene = getBiasAndDerivatives(cv,der.get());
    1681             : // special case for gamma=1.0
    1682        8280 :   if(biasf_==1.0) {
    1683             :     ene=0.0;
    1684         160 :     for(unsigned i=0; i<getNumberOfArguments(); ++i) {der[i]=0.0;}
    1685             :   }
    1686             : 
    1687             :   setBias(ene);
    1688        8385 :   if(calc_rct_) getPntrToComponent("rbias")->set(ene - reweight_factor_);
    1689             :   // calculate the acceleration factor
    1690        8280 :   if(acceleration&&!isFirstStep) {
    1691         329 :     acc += static_cast<double>(getStride()) * exp(ene/(kbt_));
    1692         329 :     const double mean_acc = acc/((double) getStep());
    1693         658 :     getPntrToComponent("acc")->set(mean_acc);
    1694        7951 :   } else if (acceleration && isFirstStep && acc_restart_mean_ > 0.0) {
    1695           2 :     acc = acc_restart_mean_ * static_cast<double>(getStep());
    1696           2 :     if(freq_adaptive_) {
    1697             :       // has to be done here if restarting, as the acc is not defined before
    1698           1 :       updateFrequencyAdaptiveStride();
    1699             :     }
    1700             :   }
    1701             : 
    1702       16560 :   getPntrToComponent("work")->set(work_);
    1703             :   // set Forces
    1704       20737 :   for(unsigned i=0; i<ncv; ++i) {
    1705       24914 :     setOutputForce(i,-der[i]);
    1706             :   }
    1707        8280 : }
    1708             : 
    1709        6084 : void MetaD::update() {
    1710        6084 :   vector<double> cv(getNumberOfArguments());
    1711             :   vector<double> thissigma;
    1712             :   bool multivariate;
    1713             : 
    1714             :   // adding hills criteria (could be more complex though)
    1715             :   bool nowAddAHill;
    1716        6084 :   if(getStep()%current_stride==0 && !isFirstStep )nowAddAHill=true;
    1717             :   else {
    1718             :     nowAddAHill=false;
    1719        3364 :     isFirstStep=false;
    1720             :   }
    1721             : 
    1722       32690 :   for(unsigned i=0; i<cv.size(); ++i) cv[i] = getArgument(i);
    1723             : 
    1724        6084 :   double vbias=getBiasAndDerivatives(cv);
    1725             : 
    1726             :   // if you use adaptive, call the FlexibleBin
    1727        6084 :   if(adaptive_!=FlexibleBin::none) {
    1728        1556 :     flexbin->update(nowAddAHill);
    1729             :     multivariate=true;
    1730             :   } else {
    1731             :     multivariate=false;
    1732             :   }
    1733             : 
    1734        6084 :   if(nowAddAHill) {
    1735             :     // add a Gaussian
    1736        2720 :     double height=getHeight(cv);
    1737             :     // returns upper diagonal inverse
    1738        3468 :     if(adaptive_!=FlexibleBin::none) thissigma=flexbin->getInverseMatrix();
    1739             :     // returns normal sigma
    1740        2346 :     else thissigma=sigma0_;
    1741             : 
    1742             :     // In case we use walkers_mpi, it is now necessary to communicate with other replicas.
    1743        2720 :     if(walkers_mpi) {
    1744             :       // Allocate arrays to store all walkers hills
    1745         348 :       std::vector<double> all_cv(mpi_nw_*cv.size(),0.0);
    1746         348 :       std::vector<double> all_sigma(mpi_nw_*thissigma.size(),0.0);
    1747         174 :       std::vector<double> all_height(mpi_nw_,0.0);
    1748         174 :       std::vector<int>    all_multivariate(mpi_nw_,0);
    1749         174 :       if(comm.Get_rank()==0) {
    1750             :         // Communicate (only root)
    1751          99 :         multi_sim_comm.Allgather(cv,all_cv);
    1752          99 :         multi_sim_comm.Allgather(thissigma,all_sigma);
    1753             : // notice that if gamma=1 we store directly -F so this scaling is not necessary:
    1754          99 :         multi_sim_comm.Allgather(height*(biasf_>1.0?biasf_/(biasf_-1.0):1.0),all_height);
    1755          99 :         multi_sim_comm.Allgather(int(multivariate),all_multivariate);
    1756             :       }
    1757             :       // Share info with group members
    1758         174 :       comm.Bcast(all_cv,0);
    1759         174 :       comm.Bcast(all_sigma,0);
    1760         174 :       comm.Bcast(all_height,0);
    1761         174 :       comm.Bcast(all_multivariate,0);
    1762             : 
    1763             :       // Flying Gaussian
    1764         174 :       if (flying) {
    1765             :         hills_.clear();
    1766          54 :         comm.Barrier();
    1767             :       }
    1768             : 
    1769         522 :       for(unsigned i=0; i<mpi_nw_; i++) {
    1770             :         // actually add hills one by one
    1771         522 :         std::vector<double> cv_now(cv.size());
    1772         522 :         std::vector<double> sigma_now(thissigma.size());
    1773        4176 :         for(unsigned j=0; j<cv.size(); j++) cv_now[j]=all_cv[i*cv.size()+j];
    1774        3978 :         for(unsigned j=0; j<thissigma.size(); j++) sigma_now[j]=all_sigma[i*thissigma.size()+j];
    1775             : // notice that if gamma=1 we store directly -F so this scaling is not necessary:
    1776        2088 :         Gaussian newhill=Gaussian(cv_now,sigma_now,all_height[i]*(biasf_>1.0?(biasf_-1.0)/biasf_:1.0),all_multivariate[i]);
    1777         522 :         addGaussian(newhill);
    1778             : 
    1779             :         // Flying Gaussian
    1780         522 :         if (!flying) {
    1781         360 :           writeGaussian(newhill,hillsOfile_);
    1782             :         }
    1783             : 
    1784             :       }
    1785             :     } else {
    1786        2546 :       Gaussian newhill=Gaussian(cv,thissigma,height,multivariate);
    1787        2546 :       addGaussian(newhill);
    1788             :       // print on HILLS file
    1789        2546 :       writeGaussian(newhill,hillsOfile_);
    1790             :     }
    1791             :   }
    1792             : 
    1793             : // this should be outside of the if block in case
    1794             : // mw_rstride_ is not a multiple of stride_
    1795        6084 :   if(mw_n_>1 && getStep()%mw_rstride_==0) {
    1796        3012 :     hillsOfile_.flush();
    1797             :   }
    1798             : 
    1799        6084 :   double vbias1=getBiasAndDerivatives(cv);
    1800        6084 :   work_+=vbias1-vbias;
    1801             : 
    1802             :   // dump grid on file
    1803        6084 :   if(wgridstride_>0&&(getStep()%wgridstride_==0||getCPT())) {
    1804             :     // in case old grids are stored, a sequence of grids should appear
    1805             :     // this call results in a repetition of the header:
    1806          80 :     if(storeOldGrids_) gridfile_.clearFields();
    1807             :     // in case only latest grid is stored, file should be rewound
    1808             :     // this will overwrite previously written grids
    1809             :     else {
    1810          40 :       int r = 0;
    1811          40 :       if(walkers_mpi) {
    1812           0 :         if(comm.Get_rank()==0) r=multi_sim_comm.Get_rank();
    1813           0 :         comm.Bcast(r,0);
    1814             :       }
    1815          40 :       if(r==0) gridfile_.rewind();
    1816             :     }
    1817          80 :     BiasGrid_->writeToFile(gridfile_);
    1818             :     // if a single grid is stored, it is necessary to flush it, otherwise
    1819             :     // the file might stay empty forever (when a single grid is not large enough to
    1820             :     // trigger flushing from the operating system).
    1821             :     // on the other hand, if grids are stored one after the other this is
    1822             :     // no necessary, and we leave the flushing control to the user as usual
    1823             :     // (with FLUSH keyword)
    1824          80 :     if(!storeOldGrids_) gridfile_.flush();
    1825             :   }
    1826             : 
    1827             :   // if multiple walkers and time to read Gaussians
    1828        6084 :   if(mw_n_>1 && getStep()%mw_rstride_==0) {
    1829        9036 :     for(int i=0; i<mw_n_; ++i) {
    1830             :       // don't read your own Gaussians
    1831        9036 :       if(i==mw_id_) continue;
    1832             :       // if the file is not open yet
    1833       12048 :       if(!(ifiles[i]->isOpen())) {
    1834             :         // check if it exists now and open it!
    1835           6 :         if(ifiles[i]->FileExist(ifilesnames[i])) {
    1836          12 :           ifiles[i]->open(ifilesnames[i]);
    1837           6 :           ifiles[i]->reset(false);
    1838             :         }
    1839             :         // otherwise read the new Gaussians
    1840             :       } else {
    1841        6018 :         log.printf("  Reading hills from %s:",ifilesnames[i].c_str());
    1842        6018 :         readGaussians(ifiles[i].get());
    1843        6018 :         ifiles[i]->reset(false);
    1844             :       }
    1845             :     }
    1846             :   }
    1847             :   // Recalculate special bias quantities whenever the bias has been changed by the update.
    1848        6084 :   bool bias_has_changed = (nowAddAHill || (mw_n_ > 1 && getStep() % mw_rstride_ == 0));
    1849        6084 :   if (calc_rct_ && bias_has_changed && getStep()%(stride_*rct_ustride_)==0) computeReweightingFactor();
    1850        6084 :   if (calc_max_bias_ && bias_has_changed) {
    1851           0 :     max_bias_ = BiasGrid_->getMaxValue();
    1852           0 :     getPntrToComponent("maxbias")->set(max_bias_);
    1853             :   }
    1854        6084 :   if (calc_transition_bias_ && bias_has_changed) {
    1855         260 :     transition_bias_ = getTransitionBarrierBias();
    1856         520 :     getPntrToComponent("transbias")->set(transition_bias_);
    1857             :   }
    1858             : 
    1859             :   // Frequency adaptive metadynamics - update hill addition frequency
    1860        6084 :   if(freq_adaptive_ && getStep()%fa_update_frequency_==0) {
    1861         151 :     updateFrequencyAdaptiveStride();
    1862             :   }
    1863             : 
    1864        6084 : }
    1865             : 
    1866             : /// takes a pointer to the file and a template string with values v and gives back the next center, sigma and height
    1867        8259 : bool MetaD::scanOneHill(IFile *ifile,  vector<Value> &tmpvalues, vector<double> &center, vector<double>  &sigma, double &height, bool &multivariate)
    1868             : {
    1869             :   double dummy;
    1870        8259 :   multivariate=false;
    1871       16518 :   if(ifile->scanField("time",dummy)) {
    1872        2223 :     unsigned ncv; ncv=tmpvalues.size();
    1873        6623 :     for(unsigned i=0; i<ncv; ++i) {
    1874        8800 :       ifile->scanField( &tmpvalues[i] );
    1875        4400 :       if( tmpvalues[i].isPeriodic() && ! getPntrToArgument(i)->isPeriodic() ) {
    1876           0 :         error("in hills file periodicity for variable " + tmpvalues[i].getName() + " does not match periodicity in input");
    1877        4400 :       } else if( tmpvalues[i].isPeriodic() ) {
    1878           0 :         std::string imin, imax; tmpvalues[i].getDomain( imin, imax );
    1879           0 :         std::string rmin, rmax; getPntrToArgument(i)->getDomain( rmin, rmax );
    1880           0 :         if( imin!=rmin || imax!=rmax ) {
    1881           0 :           error("in hills file periodicity for variable " + tmpvalues[i].getName() + " does not match periodicity in input");
    1882             :         }
    1883             :       }
    1884        4400 :       center[i]=tmpvalues[i].get();
    1885             :     }
    1886             :     // scan for kerneltype
    1887        2223 :     std::string ktype="gaussian";
    1888        6669 :     if( ifile->FieldExist("kerneltype") ) ifile->scanField("kerneltype",ktype);
    1889             :     // scan for multivariate label: record the actual file position so to eventually rewind
    1890             :     std::string sss;
    1891        4446 :     ifile->scanField("multivariate",sss);
    1892        2223 :     if(sss=="true") multivariate=true;
    1893        2223 :     else if(sss=="false") multivariate=false;
    1894           0 :     else plumed_merror("cannot parse multivariate = "+ sss);
    1895        2223 :     if(multivariate) {
    1896           0 :       sigma.resize(ncv*(ncv+1)/2);
    1897             :       Matrix<double> upper(ncv,ncv);
    1898             :       Matrix<double> lower(ncv,ncv);
    1899           0 :       for(unsigned i=0; i<ncv; i++) {
    1900           0 :         for(unsigned j=0; j<ncv-i; j++) {
    1901           0 :           ifile->scanField("sigma_"+getPntrToArgument(j+i)->getName()+"_"+getPntrToArgument(j)->getName(),lower(j+i,j));
    1902           0 :           upper(j,j+i)=lower(j+i,j);
    1903             :         }
    1904             :       }
    1905             :       Matrix<double> mymult(ncv,ncv);
    1906             :       Matrix<double> invmatrix(ncv,ncv);
    1907           0 :       mult(lower,upper,mymult);
    1908             :       // now invert and get the sigmas
    1909           0 :       Invert(mymult,invmatrix);
    1910             :       // put the sigmas in the usual order: upper diagonal (this time in normal form and not in band form)
    1911             :       unsigned k=0;
    1912           0 :       for(unsigned i=0; i<ncv; i++) {
    1913           0 :         for(unsigned j=i; j<ncv; j++) {
    1914           0 :           sigma[k]=invmatrix(i,j);
    1915           0 :           k++;
    1916             :         }
    1917             :       }
    1918             :     } else {
    1919        4400 :       for(unsigned i=0; i<ncv; ++i) {
    1920       13200 :         ifile->scanField("sigma_"+getPntrToArgument(i)->getName(),sigma[i]);
    1921             :       }
    1922             :     }
    1923             : 
    1924        4446 :     ifile->scanField("height",height);
    1925        4446 :     ifile->scanField("biasf",dummy);
    1926        6495 :     if(ifile->FieldExist("clock")) ifile->scanField("clock",dummy);
    1927        4446 :     if(ifile->FieldExist("lower_int")) ifile->scanField("lower_int",dummy);
    1928        4446 :     if(ifile->FieldExist("upper_int")) ifile->scanField("upper_int",dummy);
    1929        2223 :     ifile->scanField();
    1930             :     return true;
    1931             :   } else {
    1932             :     return false;
    1933             :   }
    1934             : }
    1935             : 
    1936         100 : void MetaD::computeReweightingFactor()
    1937             : {
    1938         100 :   if(biasf_==1.0) { // in this case we have no bias, so reweight factor is 0.0
    1939           0 :     getPntrToComponent("rct")->set(0.0);
    1940         100 :     return;
    1941             :   }
    1942             : 
    1943         100 :   double Z_0=0; //proportional to the integral of exp(-beta*F)
    1944         100 :   double Z_V=0; //proportional to the integral of exp(-beta*(F+V))
    1945         100 :   double minusBetaF=biasf_/(biasf_-1.)/kbt_;
    1946         100 :   double minusBetaFplusV=1./(biasf_-1.)/kbt_;
    1947         100 :   if (biasf_==-1.0) { //non well-tempered case
    1948             :     minusBetaF=1;
    1949             :     minusBetaFplusV=0;
    1950             :   }
    1951         100 :   const double big_number=minusBetaF*BiasGrid_->getMaxValue(); //to avoid exp overflow
    1952             : 
    1953         100 :   const unsigned rank=comm.Get_rank();
    1954         100 :   const unsigned stride=comm.Get_size();
    1955     1800200 :   for (Grid::index_t t=rank; t<BiasGrid_->getSize(); t+=stride) {
    1956      900000 :     const double val=BiasGrid_->getValue(t);
    1957      900000 :     Z_0+=std::exp(minusBetaF*val-big_number);
    1958      900000 :     Z_V+=std::exp(minusBetaFplusV*val-big_number);
    1959             :   }
    1960         100 :   if (stride>1) {
    1961          80 :     comm.Sum(Z_0);
    1962          80 :     comm.Sum(Z_V);
    1963             :   }
    1964             : 
    1965         100 :   reweight_factor_=kbt_*std::log(Z_0/Z_V);
    1966         200 :   getPntrToComponent("rct")->set(reweight_factor_);
    1967             : }
    1968             : 
    1969         273 : double MetaD::getTransitionBarrierBias() {
    1970             : 
    1971             :   // If there is only one well of interest, return the bias at that well point.
    1972         273 :   if (transitionwells_.size() == 1) {
    1973           0 :     double tb_bias = getBiasAndDerivatives(transitionwells_[0], NULL);
    1974           0 :     return tb_bias;
    1975             : 
    1976             :     // Otherwise, check for the least barrier bias between all pairs of wells.
    1977             :     // Note that because the paths can be considered edges between the wells' nodes
    1978             :     // to make a graph and the path barriers satisfy certain cycle inequalities, it
    1979             :     // is sufficient to look at paths corresponding to a minimal spanning tree of the
    1980             :     // overall graph rather than examining every edge in the graph.
    1981             :     // For simplicity, I chose the star graph with center well 0 as the spanning tree.
    1982             :     // It is most efficient to start the path searches from the wells that are
    1983             :     // expected to be sampled last, so transitionwell_[0] should correspond to the
    1984             :     // starting well. With this choice the searches will terminate in one step until
    1985             :     // transitionwell_[1] is sampled.
    1986             :   } else {
    1987             :     double least_transition_bias;
    1988         273 :     vector<double> sink = transitionwells_[0];
    1989         273 :     vector<double> source = transitionwells_[1];
    1990         273 :     least_transition_bias = BiasGrid_->findMaximalPathMinimum(source, sink);
    1991         273 :     for (unsigned i = 2; i < transitionwells_.size(); i++) {
    1992           0 :       if (least_transition_bias == 0.0) {
    1993             :         break;
    1994             :       }
    1995           0 :       source = transitionwells_[i];
    1996           0 :       double curr_transition_bias = BiasGrid_->findMaximalPathMinimum(source, sink);
    1997           0 :       least_transition_bias = fmin(curr_transition_bias, least_transition_bias);
    1998             :     }
    1999             :     return least_transition_bias;
    2000             :   }
    2001             : }
    2002             : 
    2003             : 
    2004         154 : void MetaD::updateFrequencyAdaptiveStride() {
    2005         154 :   plumed_massert(freq_adaptive_,"should only be used if frequency adaptive metadynamics is enabled");
    2006         154 :   plumed_massert(acceleration,"frequency adaptive metadynamics can only be used if the acceleration factor is calculated");
    2007         154 :   const double mean_acc = acc/((double) getStep());
    2008         154 :   int tmp_stride= stride_*floor((mean_acc/fa_min_acceleration_)+0.5);
    2009         154 :   if(mean_acc >= fa_min_acceleration_) {
    2010         129 :     if(tmp_stride > current_stride) {current_stride = tmp_stride;}
    2011             :   }
    2012         154 :   if(fa_max_stride_!=0 && current_stride>fa_max_stride_) {
    2013           0 :     current_stride=fa_max_stride_;
    2014             :   }
    2015         308 :   getPntrToComponent("pace")->set(current_stride);
    2016         154 : }
    2017             : 
    2018             : }
    2019        5874 : }

Generated by: LCOV version 1.14